ТОП просматриваемых книг сайта:
Методика преподавания математики в начальной школе. Teacher.elementary.school
Читать онлайн.Название Методика преподавания математики в начальной школе
Год выпуска 2022
isbn
Автор произведения Teacher.elementary.school
Жанр Прочая образовательная литература
Издательство Автор
Любое понятие нельзя усвоить, не осознавая его взаимосвязи с другими понятиями. Поэтому важно знать, в каких отношениях могут находиться эти понятия, и уметь устанавливать эти связи.
Понятия обозначают строчными буквами латинского алфавита: а, b, c, d, …, z. Поэтому, если заданы два понятия а и b, то объемы этих понятий обозначают соответственно А и В.
Они могут находится в различных отношениях.
Если А c В (А ≠ В), то говорят, что понятие а – видовое по отношению к понятию b, а понятие b – родовое по отношению к понятию а.
Например: если а – это «прямоугольник», b – это «четырехугольник», то их объемы А и В находятся в отношении включения (А c В и А ≠ В ), т.к. каждый прямоугольник является четырехугольником. Поэтому можно утверждать, что понятие «прямоугольник» – видовое по отношению к понятию «четырехугольник», а понятие «четырехугольник» – родовое по отношению к понятию «прямоугольник».
Если А = В, то говорят, что понятия а и b тождественны.
1) Понятия рода и вида относительны: одно и то же понятие может быть родовым по отношению к одним понятиям и видовым по отношению к другим. Например: понятие «прямоугольник» – родовое по отношению к понятию «квадрат» и видовым по отношению к понятию «четырехугольник».
2) Для понятия прямоугольник существует несколько родовых понятий – «четырехугольник», «параллелограмм», «многоугольник». Среди них можно указать ближайшее – параллелограмм».
3) Видовое понятие обладает всеми свойствами родового понятия. Квадрат являясь видовым понятием по отношению к понятию «прямоугольник», обладает всеми свойствами, присущими прямоугольнику.
Отношения между понятиями, изображая объемы, можно показать с помощью кругов Эйлера.
Например:
а) а – «прямоугольник», b – «ромб»: объемы пересекаются, но ни одно множество не является подмножеством другого, следовательно понятия «прямоугольник» и «ромб» не находятся в отношении рода и вида.
А В
б) а – «многоугольник», b – «параллелограмм»: объемы данных понятий находятся в отношении включения, но не совпадают – всякий параллелограмм является многоугольником, но не наоборот. Следовательно, понятие «параллелограмм» – видовое по отношению к понятию «многоугольник», а понятие «многоугольник» – родовое по отношению к понятию «параллелограмм».
А
В
в) а – «прямая», b – «отрезок»: объемы понятий не пересекаются, т.к. ни про один отрезок нельзя сказать, что он является прямой, и ни одна прямая не может быть названа отрезком. Следовательно, данные понятия не находятся в отношении рода и вида (отрезок – часть прямой, т.е. наблюдается отношение целого и части).
А В
IV. Определение понятий
1.