ТОП просматриваемых книг сайта:
Методика преподавания математики в начальной школе. Teacher.elementary.school
Читать онлайн.Название Методика преподавания математики в начальной школе
Год выпуска 2022
isbn
Автор произведения Teacher.elementary.school
Жанр Прочая образовательная литература
Издательство Автор
3) полная индукция.
Прямое доказательство – это построение цепочки дедуктивных умозаключений, выполняемых последовательно от А => В с соблюдением правил и законов логики, истинность которых доказана.
В доказательстве об утверждении, что четырехугольник, у которого три углы прямые, то это прямоугольник, является прямым, т.к. основываясь на истинном предложении с учетом теоремы, строится цепочка дедуктивных утверждений, приводящая к истинному заключению.
Косвенное доказательство – доказательство методом от противного. При доказательстве теоремы – А => В, допускают, что заключение В – ложно, а отрицание истинно. Предложение В (не В) присоединяется к совокупности истинных посылок, и строится умозаключение до тех пор, пока не получится противоречивое утверждение для А. Устанавливают противоречие, на основании закона о непротиворечии, и делают вывод, что предположение было ложным. Значит, на основании закона исключения третьего истинно В, т.е. то, что и требовалось доказать.
Полная индукция – метод доказательства, при котором истинность утверждения следует из истинности его во всех частных случаях.
Способы определения понятий в начальном курсе математики
План:
I. Понятия, изучаемые в курсе начальной математики.
II. Объем и содержание понятия.
III. Отношения между понятиями.
IV. Определение понятий.
1. Понятие определения.
2. Виды определений.
3. Определение через род и видовое отличие.
I. Понятия, изучаемые в курсе начальной математики.
Понятия, которые изучаются в начальном курсе математики, разбивают на четыре группы:
1) арифметические понятия, связанные с числами и операциями над ними (число, цифра, сложение, слагаемое и др.);
2) алгебраические понятия (выражения, равенства, неравенства, уравнение и др.);
3) геометрические понятия (прямая, отрезок, треугольник и др.);
4) понятия, связанные с величинами и их измерением.
В логике понятие рассматривают как форму мышления, отражающую объекты (предметы или явления) в их существенных и общих свойствах. Языковой формой понятия является слово или группа слов.
Понятия не существуют в объективном мире. Они возникают в сознании человека и заменяют предметы и явления этого мира, являясь их идеальными образами.
Иметь понятие об объекте – это значит уметь выделить его существенные признаки и отличить от всех других объектов. Математические понятия, как и другие, существуют лишь в мышлении человека, отражены в математическом языке (математических знаках и символах).
Учитель должен владеть объемом и содержанием понятий, об отношениях между ними и об операциях с ними.
II. Объем и содержание понятия
Всякий математический объект обладает определенными свойствами, среди которых выделяют существенные и несущественные.
Свойства называются существенными, если без них объект