Скачать книгу

and of the current time t

      (2.56)normal upper F Subscript i j Superscript normal pi Baseline equals normal x Subscript normal i comma normal j Superscript normal pi Baseline equals normal upper R Subscript i k Superscript normal pi Baseline normal upper U Subscript k j Superscript normal pi Baseline equals normal upper V Subscript i k Superscript normal pi Baseline normal upper R Subscript k j Superscript normal pi

      where Uπ is the right stretch tensor, Vπ the left stretch tensor, and the skew‐symmetric tensor Rπ gives the rigid body rotation. Differentiation with respect to the appropriate coordinates of the reference or actual configuration is respectively denoted by comma or slash, i.e.

      (2.57)StartFraction partial-differential f Over partial-differential normal upper X Subscript normal i Baseline EndFraction equals normal f Subscript comma normal i Baseline or StartFraction partial-differential f Over partial-differential normal x Subscript normal i Baseline EndFraction equals normal f Subscript slash normal i Baseline

      (2.58)upper X Subscript i Superscript pi Baseline equals upper X Subscript i Superscript pi Baseline left-parenthesis upper X 1 Superscript pi Baseline comma upper X 2 Superscript pi Baseline comma upper X 3 Superscript pi Baseline comma t right-parenthesis

      The material time derivative of any differentiable function fπ(X, t) given in its spatial description and referred to a moving particle of the π phase is

      If superscript α is used for StartFraction upper D Overscript alpha Endscripts Over italic upper D t EndFraction, the time derivative is taken moving with the α phase.

      2.5.2 Microscopic Balance Equations

      In the hybrid mixture theories, the microscopic situation of any π phase is first described by the classical equations of continuum mechanics. At the interfaces to other constituents, the material properties and thermodynamic quantities may present step discontinuities. As throughout the book, the effects of the interfaces are here not taken into account explicitly. These are introduced, e.g. in Schrefler (2002) and Gray and Schrefler (2001, 2007).

      For a thermodynamic property ψ, the conservation equation within the π phase may be written as

      Sources: Adapted from Hassanizadeh and Gray (1980, 1990), and Schrefler (1995).

Quantity ψ i g G
Mass 1 0 0 0
Momentum ModifyingAbove bold r With ampersand c period dotab semicolon t m g 0
Energy upper E plus 0.5 ModifyingAbove bold r With ampersand c period dotab semicolon dot ModifyingAbove bold r With ampersand c period dotab semicolon bold t Subscript bold m Baseline ModifyingAbove bold r With ampersand c period dotab semicolon minus bold q bold g dot ModifyingAbove bold r With ampersand c period dotab semicolon plus bold h 0
Entropy Λ Φ S φ

      2.5.3 Macroscopic Balance Equations

Скачать книгу