ТОП просматриваемых книг сайта:
Electromagnetic Vortices. Группа авторов
Читать онлайн.Название Electromagnetic Vortices
Год выпуска 0
isbn 9781119662877
Автор произведения Группа авторов
Жанр Физика
Издательство John Wiley & Sons Limited
31 31 Craeye, C. (2015). On the transmittance between OAM antennas. IEEE Transactions on Antennas and Propagation 64 (1): 336–339.
32 32 C. Rui, Z. Hong, M. Marco, et al. (2019). Orbital angular momentum waves: Generation, detection and emerging applications, arXiv preprint arXiv:1903.07818.
33 33 Edfors, O. and Johansson, A.J. (2011). Is orbital angular momentum (OAM) based radio communication an unexploited area? IEEE Transactions on Antennas and Propagation 60 (2): 1126–1131.
34 34 Tamagnone, M., Craeye, C., and Perruisseau‐Carrier, J. (2012). Comment on ‘Encoding many channels on the same frequency through radio vorticity: first experimental test’. New Journal of Physics 14 (11): 118001.
35 35 Morabito, A.F., Di Donato, L., and Isernia, T. (2018). Orbital angular momentum antennas: Understanding actual possibilities through the aperture antennas theory. IEEE Antennas and Propagation Magazine 60 (2): 59–67.
36 36 Xie, G., Li, L., Ren, Y. et al. (2015). Performance metrics and design considerations for a free‐space optical orbital‐angular‐momentum multiplexed communication link. Optica 2 (4): 357–365.
37 37 Gao, X., Song, X., Zheng, Z. et al. (2020). Misalignment measurement of orbital angular momentum signal based on spectrum analysis and image processing. IEEE Transactions on Antennas and Propagation 68 (1): 521–526.
38 38 Anguita, J.A., Neifeld, M.A., and Vasic, B.V. (2008). Turbulence‐induced channel crosstalk in an orbital angular momentum‐multiplexed free‐space optical link. Applied Optics 47 (13): 2414–2429.
39 39 Tyler, G.A. and Boyd, R.W. (2009). Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum. Optics Letters 34 (2): 142–144.
40 40 Paterson, C. (2005). Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Physical Review Letters 94 (15): 153901.
41 41 Rodenburg, B., Lavery, M.P., Malik, M. et al. (2012). Influence of atmospheric turbulence on states of light carrying orbital angular momentum. Optics Letters 37 (17): 3735–3737.
42 42 Ren, Y., Huang, H., Xie, G. et al. (2013). Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing. Optics Letters 38 (20): 4062–4065.
43 43 Malik, M., O’Sullivan, M., Rodenburg, B. et al. (2012). Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Optics Express 20 (12): 13195–13200.
44 44 Chaibi, A., Mafusire, C., and Forbes, A. (2013). Propagation of orbital angular momentum carrying beams through a perturbing medium. Journal of Optics 15 (10): 105706.
45 45 Trichili, A., Salem, A.B., Dudley, A. et al. (2016). Encoding information using Laguerre Gaussian modes over free space turbulence media. Optics Letters 41 (13): 3086–3089.
46 46 Willner, A.E., Ren, Y., Xie, G. et al. (2017). Recent advances in high‐capacity free‐space optical and radio‐frequency communications using orbital angular momentum multiplexing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375 (2087): 20150439.
47 47 Yan, Y., Li, L., Xie, G. et al. (2016). Multipath effects in millimetre‐wave wireless communication using orbital angular momentum multiplexing. Scientific Reports 6: 33482.
48 48 Vicente‐Lozano, M., Franceschetti, G., Ares‐Pena, F.J., and Moreno‐Piquero, E. (2002). Analysis and synthesis of a printed array for satellite communication with moving vehicles. IEEE Transactions on Antennas and Propagation 50 (11): 1555–1559.
49 49 Pan, Y.‐M. and Leung, K.W. (2012). Wideband circularly polarized dielectric bird‐nest antenna with conical radiation pattern. IEEE Transactions on Antennas and Propagation 61 (2): 563–570.
50 50 Lau, K. and Luk, K. (2006). A wideband circularly polarized conical‐beam patch antenna. IEEE Transactions on Antennas and Propagation 54 (5): 1591–1594.
51 51 Lin, W. and Wong, H. (2014). Circularly polarized conical‐beam antenna with wide bandwidth and low profile. IEEE Transactions on Antennas and Propagation 62 (12): 5974–5982.
52 52 Kai, C., Huang, P., Shen, F. et al. (2017). Orbital angular momentum shift keying based optical communication system. IEEE Photonics Journal 9 (2): 1–10.
53 53 Trichili, A., Park, K.‐H., Zghal, M. et al. (2019). Communicating using spatial mode multiplexing: Potentials, challenges and perspectives. IEEE Communications Surveys & Tutorials 21 (4): 3175–3203.
54 54 Krenn, M., Fickler, R., Fink, M. et al. (2014). Communication with spatially modulated light through turbulent air across Vienna. New Journal of Physics 16 (11): 113028.
55 55 Krenn, M., Handsteiner, J., Fink, M. et al. (2016). Twisted light transmission over 143 km. Proceedings of the National Academy of Sciences 113 (48): 13648–13653.
56 56 Molisch, A. (2005). Wireless Communications. Wiley‐IEEE Press.
57 57 Goldsmith, A. (2005). Wireless Communications. USA: Cambridge University Press.
58 58 Lee, D., Sasaki, H., Fukumoto, H. et al. (2017). Orbital angular momentum (OAM) multiplexing: An enabler of a new era of wireless communications. IEICE Transactions on Communications 100 (7): 1044–1063.
59 59 Cheng, W., Zhang, W., Jing, H. et al. (2018). Orbital angular momentum for wireless communications. IEEE Wireless Communications 26 (1): 100–107.
60 60 Huang, H., Xie, G., Yan, Y. et al. (2014). 100 Tbit s−1 free‐space data link enabled by three‐dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Optics Letters 39 (2): 197–200.
61 61 Wang, J., Yang, J.‐Y., Fazal, I.M. et al. (2012). Terabit free‐space data transmission employing orbital angular momentum multiplexing. Nature Photonics 6 (7): 488.
62 62 Thidé, B., Then, H., Sjöholm, J. et al. (2007). Utilization of photon orbital angular momentum in the low‐frequency radio domain. Physical Review Letters 99 (8): 087701.
63 63 Zhang, W., Zheng, S., Hui, X. et al. (2016). Mode division multiplexing communication using microwave orbital angular momentum: An experimental study. IEEE Transactions on Wireless Communications 16 (2): 1308–1318.
64 64 Yan, Y., Xie, G., Lavery, M.P. et al. (2014). High‐capacity millimetre‐wave communications with orbital angular momentum multiplexing. Nature Communications 5: 4876.
65 65 Willner, A. (2019). Optical Fiber Telecommunications, vol. 11. Academic Press.
66 66 Cisco Global Cloud Index: Forecast and Methodology, 2016–2021 White Paper ‐ Cisco, https://www.cisco.com/c/en/us/solutions/collateral/service‐provider/global‐cloud‐index‐gci/white‐paper‐c11‐738085.html#_Toc503317520 (accessed 2 March 2020).
67 67 Richardson, D., Fini, J., and Nelson, L.E. (2013). Space‐division multiplexing in optical fibres. Nature Photonics 7 (5): 354.
68 68 Saridis, G.M., Alexandropoulos, D., Zervas, G., and Simeonidou, D. (2015). Survey and evaluation of space division multiplexing: From technologies to optical networks. IEEE Communications Surveys & Tutorials 17 (4): 2136–2156.
69 69 Rusch, L.A., Rad, M., Allahverdyan, K. et al. (2018). Carrying data on the orbital angular momentum of light. IEEE Communications Magazine 56 (2): 219–224.
70 70 Li, G., Bai, N., Zhao, N., and Xia, C. (2014). Space‐division multiplexing: the next frontier in optical communication. Advances in Optics and Photonics 6 (4): 413–487.
71 71 Ramachandran, S. and Kristensen, P. (2013). Optical vortices in fiber. Nanophotonics 2 (5‐6): 455–474.
72 72 Li, Y., Jin, L., Wu, H. et al. (2017). Superposing multiple LP modes with microphase difference distributed along fiber to generate oam mode. IEEE Photonics Journal 9 (2):