Скачать книгу

of nanoencapsulated n‐dodecanol with SiO2 shell as shape‐formed thermal energy storage material. Energy & Fuels 30: 6153–6160.

      30 30 Liu, H., Wang, X., and Wu, D. (2017). Fabrication of graphene/TiO2/paraffin composite phase change materials for enhancement of solar energy efficiency in photocatalysis and latent heat storage. ACS Sustainable Chemistry & Engineering 5: 4906–4915.

      31 31 Wang, T., Wang, S., Luo, R. et al. (2016). Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage. Applied Energy 171: 113–119.

      32 32 Li, M., Liu, J., and Shi, J. (2018). Synthesis and properties of phase change microcapsule with SiO2‐TiO2 hybrid shell. Solar Energy 167: 158–164.

      33 33 Zhao, A., An, J., Yang, J., and Yang, E.‐H. (2018). Microencapsulated phase change materials with composite titania‐polyurea (TiO2‐PUA) shell. Applied Energy 215: 468–478.

      34 34 Wang, H., Zhao, L., Chen, L. et al. (2017). Facile and low energy consumption synthesis of microencapsulated phase change materials with hybrid shell for thermal energy storage. Journal of Physics and Chemistry of Solids 111: 207–213.

      35 35 Wang, H., Zhao, L., Song, G. et al. (2018). Organic‐inorganic hybrid shell microencapsulated phase change materials prepared from SiO2/TiC‐stabilized pickering emulsion polymerization. Solar Energy Materials and Solar Cells 175: 102–110.

      36 36 Sun, N. and Xiao, Z. (2017). Synthesis and performances of phase change materials microcapsules with a polymer/BN/TiO2 hybrid shell for thermal energy storage. Energy & Fuels 31: 10186–10195.

      37 37 Zhang, L., Yang, W., Jiang, Z. et al. (2017). Graphene oxide‐modified microencapsulated phase change materials with high encapsulation capacity and enhanced leakage‐prevention performance. Applied Energy 197: 354–363.

      38 38 Liu, Z., Chen, Z., and Yu, F. (2019). Enhanced thermal conductivity of microencapsulated phase change materials based on graphene oxide and carbon nanotube hybrid filler. Solar Energy Materials and Solar Cells 192: 72–80.

      39 39 Trigui, A., Karkri, M., and Krupa, I. (2014). Thermal conductivity and latent heat thermal energy storage properties of LDPE/wax as a shape‐stabilized composite phase change material. Energy Conversion and Management 77: 586–596.

      40 40 Lu, X., Yu, H., Zhang, L. et al. (2020). Flexible ethylene propylene diene monomer/paraffin wax vulcanizate with simultaneously increased mechanical strength, thermal‐energy storage, and shape‐memory behavior. Energy & Fuels 34: 9020–9029.

      41 41 Zhang, Q., Song, S., Feng, J., and Wu, P. (2012). A new strategy to prepare polymer composites with versatile shape memory properties. Journal of Materials Chemistry 22: 24776–24782.

      42 42 Zhang, Q. and Feng, J. (2013). Difunctional olefin block copolymer/paraffin form‐stable phase change materials with simultaneous shape memory property. Solar Energy Materials and Solar Cells 117: 259–266.

      43 43 Zhang, Q., Cui, K., Feng, J. et al. (2015). Investigation on the recovery performance of olefin block copolymer/hexadecane form stable phase change materials with shape memory properties. Solar Energy Materials and Solar Cells 132: 632–639.

      44 44 Ma, T., Li, L., Wang, Q., and Guo, C. (2018). High‐performance flame retarded paraffin/epoxy resin form‐stable phase change material. Journal of Materials Science 54: 875–885.

      45 45 Du, J., Zhang, Z., Liu, D. et al. (2019). Triple‐stimuli responsive shape memory effect of novel polyolefin elastomer/lauric acid/carbon black nanocomposites. Composites Science and Technology 169: 45–51.

      46 46 Du, J., Liu, D., Zhang, Z. et al. (2017). Dual‐responsive triple‐shape memory polyolefin elastomer/stearic acid composite. Polymer 126: 206–210.

      47 47 Wang, Y., Xia, T.D., Feng, H.X., and Zhang, H. (2011). Stearic acid/polymethylmethacrylate composite as form‐stable phase change materials for latent heat thermal energy storage. Renewable Energy 36: 1814–1820.

      48 48 Chen, F. and Wolcott, M. (2015). Polyethylene/paraffin binary composites for phase change material energy storage in building: a morphology, thermal properties, and paraffin leakage study. Solar Energy Materials and Solar Cells 137: 79–85.

      49 49 Ding, Z., Yang, W., He, F. et al. (2020). GO modified EPDM/paraffin shape‐stabilized phase change materials with high elasticity and low leakage rate. Polymer 204: 122824.

      50 50 Li, W.‐W., Cheng, W.‐L., Xie, B. et al. (2017). Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage. Energy Conversion and Management 149: 1–12.

      51 51 Deng, Y., Li, J., Qian, T. et al. (2016). Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape‐stabilized composite phase change materials with silver nanowire for thermal energy storage. Chemical Engineering Journal 295: 427–435.

      52 52 Zhang, X., Wen, R., Tang, C. et al. (2016). Thermal conductivity enhancement of polyethylene glycol/expanded perlite with carbon layer for heat storage application. Energy and Buildings 130: 113–121.

      53 53 Qian, T., Li, J., Min, X. et al. (2015). Diatomite: a promising natural candidate as carrier material for low, middle and high temperature phase change material. Energy Conversion and Management 98: 34–45.

      54 54 Wang, W., Yang, X., Fang, Y. et al. (2009). Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage. Applied Energy 86: 1479–1483.

      55 55 Yang, J., Qi, G.‐Q., Liu, Y. et al. (2016). Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape‐stabilization and light‐to‐thermal energy storage. Carbon 100: 693–702.

      56 56 Feng, L., Zheng, J., Yang, H. et al. (2011). Preparation and characterization of polyethylene glycol/active carbon composites as shape‐stabilized phase change materials. Solar Energy Materials and Solar Cells 95: 644–650.

      57 57 Zhang, Y., Wang, J., Qiu, J. et al. (2019). Ag‐graphene/PEG composite phase change materials for enhancing solar‐thermal energy conversion and storage capacity. Applied Energy 237: 83–90.

      58 58 Lu, X., Huang, H., Zhang, X. et al. (2019). Novel light‐driven and electro‐driven polyethylene glycol/two‐dimensional MXene form‐stable phase change material with enhanced thermal conductivity and electrical conductivity for thermal energy storage. Composites Part B: Engineering 177: 107372.

      59 59 Feng, L., Zhao, W., Zheng, J. et al. (2011). The shape‐stabilized phase change materials composed of polyethylene glycol and various mesoporous matrices (AC, SBA‐15 and MCM‐41). Solar Energy Materials and Solar Cells 95: 3550–3556.

      60 60 Şentürk, S.B., Kahraman, D., Alkan, C., and Gökçe, İ. (2011). Biodegradable PEG/cellulose, PEG/agarose and PEG/chitosan blends as shape stabilized phase change materials for latent heat energy storage. Carbohydrate Polymers 84: 141–144.

      61 61 Yang, L., Yang, J., Tang, L.‐S. et al. (2020). Hierarchically porous PVA aerogel for leakage‐proof phase change materials with superior energy storage capacity. Energy & Fuels 34: 2471–2479.

      62 62 Qu, L., Li, A., Gu, J., and Zhang, C. (2018). Thermal energy storage capability of polyurethane foams incorporated with microencapsulated phase change material. ChemistrySelect 3: 3180–3186.

      63 63 Hong, H., Pan, Y., Sun, H. et al. (2018). Superwetting polypropylene aerogel supported form‐stable phase change materials with extremely high organics loading and enhanced thermal conductivity. Solar Energy Materials and Solar Cells 174: 307–313.

      64 64 Zhou, L., Tang, L.‐S., Tao, X.‐F. et al. (2020). Facile fabrication of shape‐stabilized polyethylene glycol/cellulose nanocrystal phase change materials based on thiol‐ene click chemistry and solvent exchange. Chemical Engineering Journal 396: 125206.

      65 65 Tang, L.‐S., Yang, J., Bao, R.‐Y. et al. (2017). Polyethylene glycol/graphene oxide aerogel shape‐stabilized phase change materials for photo‐to‐thermal energy conversion and storage via tuning the oxidation degree of graphene oxide. Energy Conversion and Management 146: 253–264.

      66 66

Скачать книгу