Скачать книгу

components. Polymeric phase change composites exhibit immense potential applications in energy conversion, thermal management, smart clothing, and shape memory device. High‐performance and multifunctional phase change composites as an advanced TES technique are bound to play an increasingly important role in energy storage‐related applications.

      This work is financially supported by the National Natural Science Foundation of China (51873126 and 51721091).

      1 1 Xu, B., Li, P., and Chan, C. (2015). Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Applied Energy 160: 286–307.

      2 2 Chu, S. and Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. Nature 488: 294–303.

      3 3 Sundararajan, S., Samui, A.B., and Kulkarni, P.S. (2017). Versatility of polyethylene glycol (PEG) in designing solid–solid phase change materials (PCMs) for thermal management and their application to innovative technologies. Journal of Materials Chemistry A 5: 18379–18396.

      4 4 Amaral, C., Vicente, R., Marques, P.A.A.P., and Barros‐Timmons, A. (2017). Phase change materials and carbon nanostructures for thermal energy storage: a literature review. Renewable and Sustainable Energy Reviews 79: 1212–1228.

      5 5 Sharma, S.D., Kitano, H., and Sagara, K. (2004). Phase change materials for low temperature solar thermal applications. Research Reports of the Faculty of Engineering, Mie University 29: 31–64.

      6 6 Shchukina, E.M., Graham, M., Zheng, Z., and Shchukin, D.G. (2018). Nanoencapsulation of phase change materials for advanced thermal energy storage systems. Chemical Society Reviews 47: 4156–4175.

      7 7 Pielichowska, K. and Pielichowski, K. (2014). Phase change materials for thermal energy storage. Progress in Materials Science 65: 67–123.

      8 8 Wu, S., Yan, T., Kuai, Z., and Pan, W. (2020). Thermal conductivity enhancement on phase change materials for thermal energy storage: a review. Energy Storage Materials 25: 251–295.

      9 9 Sharma, A., Tyagi, V.V., Chen, C.R., and Buddhi, D. (2009). Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews 13: 318–345.

      10 10 Zhang, P., Xiao, X., and Ma, Z.W. (2016). A review of the composite phase change materials: fabrication, characterization, mathematical modeling and application to performance enhancement. Applied Energy 165: 472–510.

      11 11 Hu, H. (2020). Recent advances of polymeric phase change composites for flexible electronics and thermal energy storage system. Composites Part B: Engineering 195: 108094.

      12 12 Sharma, R.K., Ganesan, P., Tyagi, V.V. et al. (2015). Developments in organic solid–liquid phase change materials and their applications in thermal energy storage. Energy Conversion and Management 95: 193–228.

      13 13 Umair, M.M., Zhang, Y., Iqbal, K. et al. (2019). Novel strategies and supporting materials applied to shape‐stabilize organic phase change materials for thermal energy storage – a review. Applied Energy 235: 846–873.

      14 14 Qi, G.‐Q., Liang, C.‐L., Bao, R.‐Y. et al. (2014). Polyethylene glycol based shape‐stabilized phase change material for thermal energy storage with ultra‐low content of graphene oxide. Solar Energy Materials and Solar Cells 123: 171–177.

      15 15 Ye, S., Zhang, Q., Hu, D., and Feng, J. (2015). Core–shell‐like structured graphene aerogel encapsulating paraffin: shape‐stable phase change material for thermal energy storage. Journal of Materials Chemistry A 3: 4018–4025.

      16 16 Zhao, Y., Min, X., Huang, Z. et al. (2018). Honeycomb‐like structured biological porous carbon encapsulating PEG: a shape‐stable phase change material with enhanced thermal conductivity for thermal energy storage. Energy and Buildings 158: 1049–1062.

      17 17 Yang, J., Tang, L.‐S., Bao, R.‐Y. et al. (2018). Hybrid network structure of boron nitride and graphene oxide in shape‐stabilized composite phase change materials with enhanced thermal conductivity and light‐to‐electric energy conversion capability. Solar Energy Materials and Solar Cells 174: 56–64.

      18 18 Shi, J.‐N., Ger, M.‐D., Liu, Y.‐M. et al. (2013). Improving the thermal conductivity and shape‐stabilization of phase change materials using nanographite additives. Carbon 51: 365–372.

      19 19 Jamekhorshid, A., Sadrameli, S.M., and Farid, M. (2014). A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renewable and Sustainable Energy Reviews 31: 531–542.

      20 20 Aftab, W., Huang, X., Wu, W. et al. (2018). Nanoconfined phase change materials for thermal energy applications. Energy & Environmental Science 11: 1392–1424.

      21 21 Liu, C., Rao, Z., Zhao, J. et al. (2015). Review on nanoencapsulated phase change materials: preparation, characterization and heat transfer enhancement. Nano Energy 13: 814–826.

      22 22 Milián, Y.E., Gutiérrez, A., Grágeda, M., and Ushak, S. (2017). A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties. Renewable and Sustainable Energy Reviews 73: 983–999.

      23 23 Giro‐Paloma, J., Martínez, M., Cabeza, L.F., and Fernández, A.I. (2016). Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): a review. Renewable and Sustainable Energy Reviews 53: 1059–1075.

      24 24 Jacob, R. and Bruno, F. (2015). Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage. Renewable and Sustainable Energy Reviews 48: 79–87.

      25 25 Zhang, G.H., Bon, S.A.F., and Zhao, C.Y. (2012). Synthesis, characterization and thermal properties of novel nanoencapsulated phase change materials for thermal energy storage. Solar Energy 86: 1149–1154.

      26 26 De Castro, P.F., Ahmed, A., and Shchukin, D.G. (2016). Confined‐volume effect on the thermal properties of encapsulated phase change materials for thermal energy storage. Chemistry 22: 4389–4394.

      27 27 Du, X., Fang, Y., Cheng, X. et al. (2018). Fabrication and characterization of flame‐retardant nanoencapsulated n‐octadecane with melamine–formaldehyde shell for thermal energy storage. ACS Sustainable Chemistry & Engineering 6: 15541–15549.

      28 28 He, F., Wang, X., and Wu, D. (2014). New approach for sol–gel synthesis of microencapsulated n‐octadecane phase change

Скачать книгу