Скачать книгу

Letters, 470, 96–107. doi: 10.1016/j.epsl.2017.04.025

      74 Farnetani, C. G., & Hofmann, A. W. (2010). Dynamics and internal structure of the Hawaiian plume. Earth and Planetary Science Letters, 295(1–2), 231–240. doi: 10.1016/j.epsl.2010.04.005

      75 Ferrari, L., Orozco‐Esquivel, T., Manea, V., & Manea, M. (2012). The dynamic history of the Trans‐Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics, 522, 122–149. doi: 10.1016/j.tecto.2011.09.018

      76 Finotello, M., Nyblade, A., Julià, J., Wiens, D. A., & Anandakrishnana, S. (2011). Crustal Vp‐Vs ratios and thicknesses for Ross Island and the Transantarctic Mountain front, Antarctica. Geophysical Journal International, 185, 85–92.

      77 Fleet, M. E., Liu, X., Harmer, S. L., & King, P. L. (2005). Sulfur K‐edge XANES spectroscopy: Chemical state and content of sulfur in silicate glasses. The Canadian Mineralogist, 43(5), 1605–1618.

      78 Foden, J., Sossi, P. A., & Nebel, O. (2018). Controls on the iron isotopic composition of global arc magmas. Earth and Planetary Science Letters, 494, 190–201. doi: 10.1016/j.epsl.2018.04.039

      79 French, S. W., & Romanowicz, B. (2015). Broad plumes rooted at the base of the Earth's mantle beneath major hotspots. Nature, 525, 95–99. doi: 10.1038/nature14876

      80 Frey, F., & Roden, M. F. (1987). The mantle source for Hawaiian Islands. Constraints from the lavas and ultramafic inclusions. In: Menzies, M. A., & Hawkesworth, C. J. (Eds.) Mantle Metasomatism. London: Academic Press. pp. 423–463.

      81 Frey, H. M., & Lange, R. A. (2011). Phenocryst complexity in andesites and dacites from the Tequila volcanic field, Mexico: resolving the effects of degassing vs. magma mixing. Contributions to Mineralogy and Petrology, 162(2), 415–445. doi: 10.1007/s00410‐010‐0604‐1

      82 Frost, B. R. (Ed.) (1991). Introduction to oxygen fugacity and its petrologic importance, 1–9 pp. BookCrafters Inc., Chelsea, MI.

      83 Frost, B. R., & Lindsley, D. H. (1992). Equilibria among Fe‐Ti oxides, pyroxenes, olivine, and quartz 2. Application American Mineralogist, 77(9–10), 1004–1020.

      84 Frost, D. J., & McCammon, C. A. (2008). The redox state of Earth’s mantle. Annual Review of Earth and Planetary Sciences, 36(1), 389–420, doi: doi:10.1146/annurev.earth.36.031207.124322

      85 Fryer, P., Ambos, E., & Hussong, D. (1985). Origin and emplacement of Mariana forearc seamounts. Geology, 13(11), 774–777.

      86 Gaetani, G. A., O’Leary, J. A., Shimizu, N., Bucholz, C. E., & Newville, M. (2012). Rapid reequilibration of H2O and oxygen fugacity in olivine‐hosted melt inclusions. Geology, 40(10), 915–918.

      87 Gaillard, F., Scaillet, B., Pichavant, M., & Iacono‐Marziano, G. (2015). The redox geodynamics linking basalts and their mantle sources through space and time. Chemical Geology, 418, 217–233. doi: 10.1016/j.chemgeo.2015.07.030

      88 Gale, A., Laubier, M., Escrig, S., & Langmuir, C. H. (2013a). Constraints on melting processes and plume‐ridge interaction from comprehensive study of the FAMOUS and North Famous segments, Mid‐Atlantic Ridge. Earth and Planetary Science Letters, 365, 209–220. doi: 10.1016/j.epsl.2013.01.022

      89 Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y., & Schilling, J.‐G. (2013b). The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3), 489–518. doi: 10.1029/2012gc004334

      90 Genske, F. S., Turner, S. P., Beier, C., & Schaefer, B. F. (2012). The petrology and geochemistry of lavas from the Western Azores Islands of Flores and Corvo. Journal of Petrology, 53(8), 1673–1708. doi: 10.1093/petrology/egs029

      91 Ghiorso, M. S., & Evans, B. W. (2008). Thermodynamics of rhombohedral oxide solid solutions and a revision of the FE‐TI two‐oxide geothermometer and oxygen‐barometer. American Journal of Science, 308(9), 957–1039. doi: 10.2475/09.2008.01

      92 Gill, J. B. (1981). Orogenic Andesites and Plate Tectonics, New York: Springer‐Verlag. 390 pp.

      93 Grégoire, M., Moine, B. N., O’Reilly, S. Y., Cottin, J. Y., & Giret, A. (2000). Trace element residence and partitioning in mantle xenoliths metasomatized by highly alkaline, silicate‐and carbonate‐rich melts (Kerguelen Islands, Indian Ocean). Journal of Petrology, 41(4), 477–509.

      94 Grocke, S. B., Cottrell, E., de Silva, S., & Kelley, K. A. (2016). The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas. Earth and Planetary Science Letters, 440, 92–104. doi: 10.1016/j.epsl.2016.01.026

      95 Grove, T. L., Till, C. B., & Krawczynski, M. J. (2012). The role of H2O in subduction zone magmatism. Annual Review of Earth and Planetary Sciences, 40(1), 413–439. doi: 10.1146/annurev‐earth‐042711‐105310

      96 Grove, T. L., Baker, M. B., Price, R. C., Parman, S. W., Elkins‐Tanton, L. T., Chatterjee, N., & Muntener, O. (2005). Magnesian andesite and dacite lavas from Mt. Shasta, northern California: products of fractional crystallization of H2O‐rich mantle melts. Contributions to Mineralogy and Petrology, 148(5), 542–565. doi: 10.1007/s00410‐004‐0619‐6

      97 Gunnarsson, B., Marsh, B. D., & Taylor, H. P. (1998). Generation of Icelandic rhyolites:silicic lavas from Torfajökull central volcano, edited. Journal of Volcanology and Geothermal Research, 83(1–2), 1–45.

      98 Haggerty, S. (1976). Opaque mineral oxides in terrestrial igneous rocks. Oxide Minerals: Short Course Notes, 3, 101–300.

      99 Hartley, M. E., Shorttle, O., Maclennan, J., Moussallam, Y., & Edmonds, M. (2017). Olivine‐hosted melt inclusions as an archive of redox heterogeneity in magmatic systems. Earth and Planetary Science Letters, 479, 192–205. doi: https://doi.org/10.1016/j.epsl.2017.09.029.

      100 Hasse, K. M., Stoffers, P., & Dieter Garbe‐Schönberg, C. (1997). The petrogenetic evolution of lavas from Easter Island and neighbouring seamounts, near‐ridge hotspot volcanoes in the SE Pacific, edited. Journal of Petrology, 38(6), 785–813.

      101 Hauri, E. H., & Hart, S. R. (1994). Constraints on melt migration from mantle plumes: a trace element study of peridotite xenoliths from Savai'i, Western Samoa. Journal of Geophysical Research: Solid Earth, 99(B12), 24301–24321.

      102 Helz, R., Cottrell, E., Brounce, M. N., & Kelley, K. A. (2017). Olivine‐melt relationships and syneruptive redox variations in the 1959 eruption of Kīlauea Volcano as revealed by XANES. Journal of Volcanology and Geothermic Research, 333, 1–14.

      103 Herd, C. D. K. (2008). Basalts as probes of planetary interior redox state. Reviews in Mineralogy and Geochemistry, 68, 527–553.

      104 Hirschmann, M., Withers, A., Ardia, P., & Foley, N. (2012). Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets. Earth and Planetary Science Letters, 345, 38–48.

      105 Howe, T. M., Lindsay, J. M., Shane, P., Schmitt, A. K., & Stockli, D. F. (2014). Re‐evaluation of the Roseau Tuff eruptive sequence and other Ignimbrites in Dominica, Lesser Antilles. Journal of Quaternary Science, 29(6), 531–546. doi: 10.1002/jqs.2723

      106 Izbekov, P. E., Eichelberger, J. C., Patino, L. C., Vogel, T. A., & Ivanov, B. V. (2002). Calcic cores of plagioclase phenocrysts in andesite from Karymsky volcano: Evidence for rapid introduction by basaltic replenishment. Geology, 30(9), 799–802. doi: 10.1130/0091‐7613(2002)030<0799:ccoppi>2.0.co;2

      107 Janiszewski, H. A., Abers, G. A., Shillington, D. J., & Calkins, J. A. (2013). Crustal structure along the Aleutian island arc: New insights from receiver functions constrained by active‐source data. Geochemistry, Geophysics, Geosystems, 14(8), 2977–2992. doi: 10.1002/ggge.20211

      108 Jayasuriya, K. D., O'Neill, H. S., Berry, A. J., & Campbell, S. J. (2004). A Mossbauer study of the oxidation state of Fe in silicate melts. American Mineralogist, 89(11–12), 1597–1609.

      109 Kelemen, P. B., Yogodzindki, G. M., & Scholl, D. W. (2003). Along‐strike variation in the Aleutian Island Arc: Genesis

Скачать книгу