Скачать книгу

entering equation (1.56) for an andesitic melt (easily quenchable as a glass) with fO2 buffered by the Ru‐Ru2O assemblage in the T‐range 1673K to 2473K and for pressures up 23 GPa. Data fitting showed that volume term in Equation 1.56 turns from negative to positive for P > 10 GPa, which yielding iron oxidation with increasing pressure. The calibrated Equation 1.56 was then used by the authors to demonstrate how the mantle oxidized after the Earth’s core started to form by a deep magma ocean with initial FeIII/Fetot = 0.04 from which FeO disproportionated to Fe2O3 plus metallic iron at high temperature. The separation of Fe0 to the core raised the oxidation state of the upper mantle and of exsolved gases that were forming the atmosphere (Armstrong et al., 2019).

      The search for one general formulation for all melt compositions of interest in petrology and geochemistry led to empirical expressions, in which adjustable parameters are introduced without the formal rigor requested by Equation 1.56 (e.g. Kress and Carmichael, 1991). These formulations furnish quite accurate fO2 values from measured FeII/FeIII ratios within the compositional domain in which they have been calibrated. Besides, they often violate reaction stoichiometry and do not ensure internal consistency: if used to calculate activities they fail the application of the Gibbs‐Duhem principle relating all component activities within the same phase (e.g., Lewis and Randall, 1961). Such expressions then treat fO2 as a Maxwell’s demon, doing what we need it to do to fit the calibration data and with the consequence that outside the calibration domain, all the unpredictable non‐idealities are discharged on the fO2 terms, resulting in biased calculations of fluid speciation, or other phase equilibria constraints.

      The problem of unsolved compositional behaviors due to speciation, that are not accounted for by typical oxide‐based approaches to mixtures, is exacerbated when dealing with the mutual exchanges involving iron and another redox‐sensitive elements, such as sulfur. Sulfur‐bearing melt species play a special role since the oxidation of sulfide to sulfate involves eight electrons: for any increment of the FeIII/FeII redox ratio, there is an eight‐fold increment for sulfur species (S–II/SVI; e.g., Moretti and Ottonello, 2003; Nash et al., 2019; Cicconi et al., 2020b; Moretti and Stefansson, 2020). Sulfur in magmas partitions between different phases (gas, solids such as pyrrhotite and anhydrite, and liquid as well, such as immiscible Fe–O–S liquids; Baker and Moretti, 2011 and references therein). The large electron transfer makes S–II/SVI a highly sensitive indicator to fO2 changes in a narrow range (typically around QFM and NNO buffers in magmatic melts; Moretti, 2020 and references therein), whereas its effectiveness as a buffer of the redox potential is limited by the abundance of sulfur in magma, significantly lower than iron.

Schematic illustration of two-redox potential fO2-fS2 diagram. The conformation of stability fields in the Fe–O–S space is essentially the same also for large fO2 and fS2 variations with temperature.

      (redrawn from Nadoll et al., 2011).

      A natural assemblage of pyrite + magnetite + pyrrhotite corresponds then to the triple point marked by a star in Figure 1.7, which at a given T is invariant for fO2 and fS2 values given by the simultaneous occurrence of Reaction 1.10 and:

      (1.57)equation

      that allow identifying the stable phase as a function of temperature and fugacities (or activities) of reference gas species. It is worth noting that in absence of water (no H in the system represented in Figure 1.7) the boundary between FeS2 and FeS is a function of fS2 only (see Reaction 1.10) but not of fO2, as instead reported in Figure 1.4.

      In this short compendium we show the redox features in aqueous‐hydrothermal and igneous Earth. This allows the summarizing of the main redox features of a system, to show what we know of its equilibrium properties, but also what we do not know, especially for melts and magmas. We make a parallel between redox in magmas and redox in aqueous‐hydrothermal solutions and show that what really

Скачать книгу