Скачать книгу

- - - ResNet50 0.707 0.814 0.736 0.613 0.561 0.716 0.63 0.789 - - - - - - [41] 0.762 0.883 0.816 0.679 0.801 0.729 0.709 0.838 0.744 0.841 0.884 0.800 0.754 0.876 [49] 0.862 0.831 0.901 0.721 0.909 0.894 0.851 0.944 0.893 0.924 0.704 0.806 0.798 0.851 [13] - 0.875 0.962 - - - - 0.861 0.850 0.868 - - - -

Скачать книгу


Ref. Model Accuracy F1-Score Specificity Sensitivity PPV NPV AUC Recall Precision
[23] DenseNet121 0.572–0.842 0.574 –0.942 - - - - - - -
[67] AlexNet (S) 0.9684 0.9023 87.99 92.65 87.94 90.68 - - -
VGG16 (S) 0.9742 0.9228 91.46 93.42 91.18 93.63 - - -
VGG19 (S) 0.9757 0.9161 88.86 94.49 88.90 94.46 - - -
DenseNet121(S) 0.9801 0.9248 90.01 95.10 90.00 95.11 - - -
ResNet18 (S) 0.9766 0.9099 85.09 96.63 85.97 96.52 - - -
Inceptionv3(S) 0.9796 0.9225 89.58 95.08 89.58 95.08 - - -
ResNet50 (S) 0.9775 0.9233 90.59 94.32 90.43 94.42 - - -
[7] VDSNet 0.73