Аннотация

Provides a concise yet complete foundational knowledge of the business of healthcare.


Administrative Healthcare Data: A Guide to Its Origin, Content, and Application Using SAS explains the source and content of administrative healthcare data, which is the product of financial reimbursement for healthcare services. The book integrates the business knowledge of healthcare data with practical and pertinent case studies as shown in SAS Enterprise Guide.


The book's blend of SAS programming and industry knowledge is unique. It illustrates concepts of administrative healthcare data with actual healthcare case studies. All applications are created with SAS Enterprise Guide or Base SAS and can be taken straight from the book and put to use immediately.


Central topics addressed include key players in the healthcare industry and the roles they play; claim submission mechanisms used by different providers; medical claim content, both pre- and post-adjudication. Written for healthcare analysts regardless of their level of proficiency with SAS Enterprise Guide, SAS programming, or healthcare industry knowledge, Administrative Healthcare Data is a must-read for analysts new to the industry and a great review for experienced healthcare analysts.


This book is part of the SAS Press program.

Аннотация

Working with longitudinal data introduces a unique set of challenges. Once you've mastered the art of performing calculations within a single observation of a data set, you're faced with the task of performing calculations or making comparisons between observations. It's easy to look backward in data sets, but how do you look forward and across observations? Ron Cody provides straightforward answers to these and other questions. Longitudinal Data and SAS details useful techniques for conducting operations between observations in a SAS data set. For quick reference, the book is conveniently organized to cover tools, including an introduction to powerful SAS programming techniques for longitudinal data; case studies, including a variety of illuminating examples that use Ron's techniques; and macros, including detailed descriptions of helpful longitudinal data macros. Beginning to intermediate SAS users will appreciate this book's informative, easy-to-comprehend style. And users who frequently process longitudinal data will learn to make the most of their analyses by following Ron's methodologies.
This book is part of the SAS Press program.

Аннотация

SAS users in the Health and Life Sciences industry need to create complex graphs to analyze biostatistics data and clinical data, and they need to submit drugs for approval to the FDA. Graphs used in the HLS industry are complex in nature and require innovative usage of the graphics features. Clinical Graphs Using SAS® provides the knowledge, the code, and real-world examples that enable you to create common clinical graphs using SAS graphics tools, such as the Statistical Graphics procedures and the Graph Template Language.


This book describes detailed processes to create many commonly used graphs in the Health and Life Sciences industry. For SAS® 9.3 and SAS® 9.4 it covers many improvements in the graphics features that are supported by the Statistical Graphics procedures and the Graph Template Language, many of which are a direct result of the needs of the Health and Life Sciences community. With the addition of new features in SAS® 9.4, these graphs become positively easy to create.
Topics covered include the usage of SGPLOT procedure, the SGPANEL procedure and the Graph Template Language for the creation of graphs like forest plots, swimmer plots, and survival plots.

Аннотация

Combine complex concepts facing the financial sector with the software toolsets available to analysts.
The credit decisions you make are dependent on the data, models, and tools that you use to determine them. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory and Applications combines both theoretical explanation and practical applications to define as well as demonstrate how you can build credit risk models using SAS Enterprise Miner and SAS/STAT and apply them into practice.
The ultimate goal of credit risk is to reduce losses through better and more reliable credit decisions that can be developed and deployed quickly. In this example-driven book, Dr. Brown breaks down the required modeling steps and details how this would be achieved through the implementation of SAS Enterprise Miner and SAS/STAT.
Users will solve real-world risk problems as well as comprehensively walk through model development while addressing key concepts in credit risk modeling. The book is aimed at credit risk analysts in retail banking, but its applications apply to risk modeling outside of the retail banking sphere. Those who would benefit from this book include credit risk analysts and managers alike, as well as analysts working in fraud, Basel compliancy, and marketing analytics. It is targeted for intermediate users with a specific business focus and some programming background is required.
Efficient and effective management of the entire credit risk model lifecycle process enables you to make better credit decisions. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory and Applications demonstrates how practitioners can more accurately develop credit risk models as well as implement them in a timely fashion.
This book is part of the SAS Press Program.

Аннотация

Using Applied Econometrics with SAS: Modeling Demand, Supply, and Risk , you will quickly master SAS applications for implementing and estimating standard models in the field of econometrics. This guide introduces you to the major theories underpinning applied demand and production economics. For each of its three main topics—demand, supply, and risk—a concise theoretical orientation leads directly into consideration of specific economic models and econometric techniques, collectively covering the following: Double-log demand systems Linear expenditure systems Almost ideal demand systems Rotterdam models Random parameters logit demand models Frequency-severity models Compound distribution models Cobb-Douglas production functions Translogarithmic cost functions Generalized Leontief cost functions Density estimation techniques Copula models SAS procedures that facilitate estimation of demand, supply, and risk models include the following, among others: PROC MODEL PROC COPULA PROC SEVERITY PROC KDE PROC LOGISTIC PROC HPCDM PROC IML PROC REG PROC COUNTREG PROC QLIM An empirical example, SAS programming code, and a complete data set accompany each econometric model, empowering you to practice these techniques while reading. Examples are drawn from both major scholarly studies and business applications so that professors, graduate students, government economic researchers, agricultural analysts, actuaries, and underwriters, among others, will immediately benefit. This book is part of the SAS Press program.

Аннотация

Strategies for Formulations Development: A Step-by-Step Guide Using JMP is based on the authors' significant practical experience partnering with scientists to develop strategies to accelerate the formulation (mixtures) development process. The authors not only explain the most important methods used to design and analyze formulation experiments, but they also present overall strategies to enhance both the efficiency and effectiveness of the development process. With this book you will be able to: Approach the development process from a strategic viewpoint with the overall end result in mind. Design screening experiments to identify components that are most important to the performance of the formulation. Design optimization experiments to identify the maximum response in the design space. Analyze both screening and optimization experiments using graphical and numerical methods. Optimize multiple criteria, such as the quality, cost, and performance of product formulations. Design and analyze formulation studies that involve both formulation components and process variables using methods that reduce the required experimentation by up to 50%. Linking dynamic graphics with powerful statistics, JMP helps construct a visually compelling narrative to interactively share findings that are coherent and actionable by colleagues and decision makers. Using this book, you can take advantage of computer generated experiment designs when classical designs do not suffice, given the physical and economic constraints of the experiential environment. Strategies for Formulations Development: A Step-by-Step Guide Using JMP(R) is unique because it provides formulation scientists with the essential information they need in order to successfully conduct formulation studies in the chemical, biotech, and pharmaceutical industries.

Аннотация

Decision Trees for Analytics Using SAS Enterprise Miner is the most comprehensive treatment of decision tree theory, use, and applications available in one easy-to-access place. This book illustrates the application and operation of decision trees in business intelligence, data mining, business analytics, prediction, and knowledge discovery. It explains in detail the use of decision trees as a data mining technique and how this technique complements and supplements data mining approaches such as regression, as well as other business intelligence applications that incorporate tabular reports, OLAP, or multidimensional cubes.
An expanded and enhanced release of Decision Trees for Business Intelligence and Data Mining Using SAS Enterprise Miner, this book adds up-to-date treatments of boosting and high-performance forest approaches and rule induction. There is a dedicated section on the most recent findings related to bias reduction in variable selection. It provides an exhaustive treatment of the end-to-end process of decision tree construction and the respective considerations and algorithms, and it includes discussions of key issues in decision tree practice.
Analysts who have an introductory understanding of data mining and who are looking for a more advanced, in-depth look at the theory and methods of a decision tree approach to business intelligence and data mining will benefit from this book.
This book is part of the SAS Press program.

Аннотация

Enhance your SAS data-wrangling skills with high-precision and parallel data manipulation using the DS2 programming language. Now in its second edition, this book addresses the DS2 programming language from SAS, which combines the precise procedural power and control of the Base SAS DATA step language with the simplicity and flexibility of SQL. DS2 provides simple, safe syntax for performing complex data transformations in parallel and enables manipulation of native database data types at full precision. It also covers PROC FEDSQL, a modernized SQL language that blends perfectly with DS2. You will learn to harness the power of parallel processing to speed up CPU-intensive computing processes in Base SAS and how to achieve even more speed by processing DS2 programs on massively parallel database systems. Techniques for leveraging internet APIs to acquire data, avoiding large data movements when working with data from disparate sources, and leveraging DS2's new data types for full-precision numeric calculations are presented, with examples of why these techniques are essential for the modern data wrangler. Here's what's new in this edition: how to significantly improve performance by using the new SAS Viya architecture with its SAS Cloud Analytic Services (CAS) how to declare private variables and methods in a package the new PROC DSTODS2 the PCRXFIND and PCRXREPLACE packages While working though the code samples provided with this book, you will build a library of custom, reusable, and easily shareable DS2 program modules, execute parallelized DATA step programs to speed up a CPU-intensive process, and conduct advanced data transformations using hash objects and matrix math operations. This book is part of the SAS Press Series.

Аннотация

If you are a researcher or student with experience in multiple linear regression and want to learn about logistic regression, Paul Allison's Logistic Regression Using SAS: Theory and Application, Second Edition, is for you! Informal and nontechnical, this book both explains the theory behind logistic regression, and looks at all the practical details involved in its implementation using SAS. Several real-world examples are included in full detail. This book also explains the differences and similarities among the many generalizations of the logistic regression model. The following topics are covered: binary logistic regression, logit analysis of contingency tables, multinomial logit analysis, ordered logit analysis, discrete-choice analysis, and Poisson regression. Other highlights include discussions on how to use the GENMOD procedure to do loglinear analysis and GEE estimation for longitudinal binary data. Only basic knowledge of the SAS DATA step is assumed. The second edition describes many new features of PROC LOGISTIC, including conditional logistic regression, exact logistic regression, generalized logit models, ROC curves, the ODDSRATIO statement (for analyzing interactions), and the EFFECTPLOT statement (for graphing nonlinear effects). Also new is coverage of PROC SURVEYLOGISTIC (for complex samples), PROC GLIMMIX (for generalized linear mixed models), PROC QLIM (for selection models and heterogeneous logit models), and PROC MDC (for advanced discrete choice models).
This book is part of the SAS Press program.

Аннотация

Written especially for psychometricians, scale developers, and practitioners interested in applications of Bayesian estimation and model checking of item response theory (IRT) models, this book teaches you how to accomplish all of this with the SAS MCMC Procedure. Because of its tutorial structure, Bayesian Analysis of Item Response Theory Models Using SAS will be of immediate practical use to SAS users with some introductory background in IRT models and the Bayesian paradigm.
Working through this book’s examples, you will learn how to write the PROC MCMC programming code to estimate various simple and more complex IRT models, including the choice and specification of prior distributions, specification of the likelihood model, and interpretation of results. Specifically, you will learn PROC MCMC programming code for estimating particular models and ways to interpret results that illustrate convergence diagnostics and inferences for parameters, as well as results that can be used by scale developers—for example, the plotting of item response functions. In addition, you will learn how to compare competing IRT models for an application, as well as evaluate the fit of models with the use of posterior predictive model checking methods.
Numerous programs for conducting these analyses are provided and annotated so that you can easily modify them for your applications.