Аннотация

Contains a wealth of information previously scattered in research journals, conference proceedings and technical reports. Identifies more than 200 unsolved problems. Every problem is stated in a self-contained, extremely accessible format, followed by comments on its history, related results and literature. The book will stimulate research and help avoid efforts on solving already settled problems. Each chapter concludes with a comprehensive list of references which will lead readers to original sources, important contributions and other surveys.

Аннотация

Features recent advances and new applications in graph edge coloring Reviewing recent advances in the Edge Coloring Problem, Graph Edge Coloring: Vizing's Theorem and Goldberg's Conjecture provides an overview of the current state of the science, explaining the interconnections among the results obtained from important graph theory studies. The authors introduce many new improved proofs of known results to identify and point to possible solutions for open problems in edge coloring. The book begins with an introduction to graph theory and the concept of edge coloring. Subsequent chapters explore important topics such as: Use of Tashkinov trees to obtain an asymptotic positive solution to Goldberg's conjecture Application of Vizing fans to obtain both known and new results Kierstead paths as an alternative to Vizing fans Classification problem of simple graphs Generalized edge coloring in which a color may appear more than once at a vertex This book also features first-time English translations of two groundbreaking papers written by Vadim Vizing on an estimate of the chromatic class of a p-graph and the critical graphs within a given chromatic class. Written by leading experts who have reinvigorated research in the field, Graph Edge Coloring is an excellent book for mathematics, optimization, and computer science courses at the graduate level. The book also serves as a valuable reference for researchers interested in discrete mathematics, graph theory, operations research, theoretical computer science, and combinatorial optimization.