Аннотация

This book presents simple interdisciplinary stochastic models meant as a gentle introduction to the field of non-equilibrium statistical physics. It focuses on the analysis of two-state models with cooperative effects, which are versatile enough to be applied to many physical and social systems. The book also explores a variety of mathematical techniques to solve the master equations that govern these models: matrix theory, empty-interval methods, mean field theory, a quantum approach, and mapping onto classical Ising models. The models discussed are at the confluence of nanophysics, biology, mathematics, and the social sciences and provide a pedagogical path toward understanding the complex dynamics of particle self-assembly with the tools of statistical physics.

Аннотация

After a quarter century of discoveries that rattled the foundations of classical mechanics and electrodynamics, the year 1926 saw the publication of two works intended to provide a theoretical structure to support new quantum explanations of the subatomic world. Heisenberg's matrix mechanics and Schrodinger’s wave mechanics provided compatible but mathematically disparate ways of unifying the discoveries of Planck, Einstein, Bohr and many others. Efforts began immediately to prove the equivalence of these two structures, culminated successfully by John von Neumann’s 1932 volume «Mathematical Foundations of Quantum Mechanics.» This forms the springboard for the current effort. We begin with a presentation of a minimal set of von Neumann postulates while introducing language and notation to facilitate subsequent discussion of quantum calculations based in finite dimensional Hilbert spaces. Chapters which follow address two-state quantum systems (with spin one-half as the primary example), entanglement of multiple two-state systems, quantum angular momentum theory and quantum approaches to statistical mechanics. A concluding chapter gives an overview of issues associated with quantum mechanics in continuous infinite-dimensional Hilbert spaces.