Скачать книгу

следующим в последовательности будет Е. Величина P(E/D) называется переходной вероятностью или условной вероятностью того, что при условии появления элемента (или возникновения события) D последует Е.

/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUAAAABAAAARgEoAAMAAAABAAMAAAExAAIAAAARAAAATgAAAAAAAJOjAAAD6AAAk6MAAAPocGFpbnQubmV0IDQuMi4xNgAA/9sAQwACAQECAQECAgICAgICAgMFAwMDAwMGBAQDBQcGBwcHBgcHCAkLCQgICggHBwoNCgoLDAwMDAcJDg8NDA4LDAwM/9sAQwECAgIDAwMGAwMGDAgHCAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM/8AAEQgCGwKKAwEhAAIRAQMRAf/EAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEBAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXETIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+cV4+vb29aWPJj+bt096AFXbn7vYZ5oKgN823g+maAJQCkfBzRt3p69uex/yP1oAkVcpn5t3fjtUsK7j93dx0B6j/JoAljBYZ/L1HoastxtH3jjgHHNACR8jru3cEdP89afFuxt/UnmgB0Yx1A6Z45zU0R5BxjigBeDt6/j+dKB8v8J9eOhoAVVxgke+O3H+TTgpX5h8x56f5/zigBY8Fsnhe/FIF2D+PHJPegBdpD4bnIx0pxURhenOAfegACZAXpt7E5oGZHztPOMetADZIiTgbcL1+vemPFu/IDcRnP40AKy7V/i3fX0pMYH97aTnj6UAMVieMUf6vcPXI4/zzQAYZtvpnml6r/tDmgBQrMzZ/T/P8vejZkDBx6D+VADdmDjdx69M+3+fWrlsuHG7c23njpQBp2uFHy4DE8+n+e1atouxP9rOc9unf6f0oAmdcrx8qr246+lTpArbcD+Qz7/jQBLCctu4yB27HrSXMPl7SfvLnGR04oArNBviX5QFTqeffH5etUbhMkfNtVgBj1/z/n1oArzKEb68jHfNB3Bj+p/P/wCv/nqASq+6P5RuXHH9P8KUNzkKM8gY70AN/h9OMY3H8P6/nTZCS3zbtv09v/1UAGxWcfeBGdxPbvUsSlwCvzEjIAOMigC/bfvVUN352g5/zmp1TCNxlmAPT6/4/p70APmVfbIBBbOcD8PrVObIc4wTgDGeT/nmgDPumXJHb1xzj+n/ANesqeTA43MAcEntQBCWVHb+Ie3GP89utOUmNT82WBB57fQ0AKOU+U8/5/z+NSwNzub/AL5znP8An+tAEoO8/M2Np5B5we/41atiCFG1RgjII4H+eaALKFtowv13H8f8BUqpvX8ehPb+eaAG5BOfu7iOP7o9v89/zmiTzFOVJGMYNAEky5DA53BgWBHQ/wCc1XzhunGcDAyP8/57UAMZfMEn3gT8vTp3/pVGWDe29vm9QO3HagCzHB069NvHXn/9X6VMiiKAZ3crgH9P0oACAgxz1xjrz6n0x/Sm3km+T13dvX+VAGVex4O1t2SADk9f8msq8DRM33gueB1oAgDLhgeew4zTDuVB27c9iM0AUrz95nb91uSdvOf/ANefyqp9nH95v++aAKhHLfNjrgelDEeu3v75oAfkg9+nHFOZM/y69aAHCPcu5iMZ7H/PelHzE4PbnP8AFQBPCm0n5j/j/nNSJ8m37xJPAHf2oAlhVQN2CNvPFPjbB/u5GOvagB+0kq3Tj05/z0pyNyy43dvmFAFhYRJ0z83tSjgsuF+buQef85oAUr5YPT6dvWkxk/3uT17igB7xbxu9O3f/AD/n1pUdgP8Ae9Bx+Pr/APWoAcQp3J3XnPrjv/nNOHy5Pf696ABmDcHtwR6/5z/P8Wgcf0oAcp2qB1K5x6/Ue/8AnNOCBW4YdOw4/D9aAGrneuN3ynHPU03HK8HgnI2/WgBsq5b8Me3FNA2ybl656mgCMpkfd3DqQD/n/P1pwj8wr/dXrnORxQA7aFOVzwB070HhN4PTr7j/AD/n1AEeTPdvxpGPPA7cUAJwTjb7njpVq0f5wf5+tAGvZooY/dZl65HNaFku4L/eBzgevT+n+eaALkmZ3YHCMoyD/n86cJ2Hy9SBk+564/lQBYQ5cd+R36D1z/ntSS8NuU/LIMZBwD7n8qAKgbbL8qnbgk569/8ADvVO5ikAbklV/wBr/PpQBTk+Z+hXknpjj/OP1p0JKvhivB4Pp/n0+lAE0ROcFu+CMfWm5Ugj76jHT8qAHOccnBK5H/6qjwdwwOTg9MZoAjHyuFUDr05696tRru9D0I3N7/8A6j+IoA0IJPJjVAw+XlRn1yBUiS5j3H5uMnnr/n/PagAmk2kZ+XClSG/H9ef1qncz437WDAcsD2/T/PFAGfdyCTcGXhjwfb+eay5iG+8NvGOvTP8AkUANkjZ3PzfL2zwBn2oA4bLD29CD7fj+X6AAXyu0n5gOck9KmVAhbdgNj0/CgCTGDjC/ex2H5+1XIF+Vckdcc8fX/wDX7UAXAPMDfLlfu5I/nT1/eg53bs5JznP+eaAFcZ+bb95sA+ufT/PepETKZ/D73+elACSNnOP552moJHXczHLYz1xQA6R9rP7nPtnv79zVVJd0m0hWB7/54oAmt1WNmLDHHPG3P+eOaFkVh83zcHlSfy/HrQARs3l4XcwYdewI7fTp+tMkfjlmz3I7e/sR0/GgDNldWAz65+7jA/z+VZl2cN17nHt+FAFWUIrDbyy8gk8fhRKxCcnDNwTuzigCheN5jbvbHX/CqghbH3D/AN9Y/pQBV3bAx2n6+lEYyAP06fSgB0S+Yfutxzx371K8e4kegwBjHtQA5BsHH1+g/wA4/KnrDknOQx457n/OaAJI42bkde3+f89aVU2uNy++PT60ATBcjkjJHP8AtCnkZ4zxn/CgBwbYQcdDn1qQSAy9iGPrn3/z9KAJlPzY3HP64pynB74/yRQA5DkHd6ZznrTSNv3vfrQBIv8Aq9ytuyc9e/cU4gyPtbkN6d6AAL1+98vtUhXEed3Ttj+Q/wA9KAGqgYsVO1VI7dKN2AMfw85z2oAF+Yt8u0txyOc4oZRjp+A70ACt97jd2yec+lEnK453Y4zQA1slPx4z0I/z+lJGjBU475GOtACD9394YXrwM5pqhlLcfiT16+tAEg5i/X1zSCLLknODxjHJoAQjKhR6dRwQKaRkM394YHtQA1FIfn69KsWByV/lnHFAGtaLtT7xHQdc/hWrYRgYYKx9eO3t/wDXoAuqmXHzLuLcsO/XPX/69OWNYQrZb5SM8dRQBLGdq4yWC+p69OaeUVY1yNvGfpgev/16AKtzFvf7w4xjHUe1U79mZ2ZtvTk4OemMfyoAzym9W6MCeOetC7XkHTnkgdvwoAehDQMyKNwP4j2H/wBbtUkxKsu446DuMj1oAYsqlf4ivp2oMe0Y4VcZHH4fXrQA0hZWwM5b5iD26df84+tWE+4f7uMdf8+1AE0U2C2d21ecjp/nk1Kl3sVlLHauc5P04x/n/EArXE+Xbb6Acnjv3/Gq32jcGA7gZwOv0/z/ACoAqSzcNt/hHA+vf+dU2+dvTHQ0ABQKvy7jx82T7/X8PzpS4OFbafXJx7c0ANjDbz/EvscAH/OOKljDGTduGOuMdelAEyMxYHb26/596uQx4JVdu5ePl7/5xQBaDB1+7/CTjBX1/SpFVc9Pmx6cj6/570ANBwc7ueCMf545qZR5cZG4EdenSgBsz5Hl9MY6sR/nr61CzqrfNyM80AVbibkfKF55yeneoUl3KW44HcdO1AEiS/LhztboN3UD1qSKXnb8vyjOQen+f6UASRzcfd6d/UZ6ng1GXySv3uvfjHr/AJ/xoAz7nD5b9Bn5c8/41l3nzSrtO4Yx9cY/z+NAFd/vlujYw38OT26dKhkfei7W2tzgn3oAr3JX7vPyjGPWqvnlePn/AO/Y/wAaAKir/LqaBGZMhduF9+D60AWE4OP5/wD1utJ5ag/Nyf4s85+tADo49zZ+YDPPc9v8/hUqLn8O3txQBMu4wt90t27Uqr83K9MYzzn6UAO2KSu3I9AT07U9423AFlZieMdjxQAiclcZ564P0p8P3v4QyjjsTQBZQ/dy3y8nH6f5HtT/ALwxgq3OTQA9VIjxnv8Al/n+tD/7Q2+wPSgBELLgblXBJ46Gno+9/wBT9KAJCN7Mv3Vbr6H/AD/SgAxnPPynByfu0AOJ27uM7qRwSeev0/rQAwOoOcNjsaXHJzwAPxoAbvyfmzzwcHkkZ/wpS2QDj9M0AKSSe2d2TjnA4waiIZxgeowPagB3RufmAGCaRoun97vz0oAcw3Jt+XrjB6H/AD/Wmb8/N8wx6EfT6etAAWBP+c96a8vbA4OOKAIy2MNjtjr7VNbH5x+ZIoA2LU/Ku7ueQTnPHFbVmzGPa3OQDyen6UAWtreUPk45Hy9QakJUP9OQRzj26/5FAD4OTnb8uc9OtSlt2W2lhyee3uf50AV3Uu/fjJLEd8D/AD/+qqN4ih36KGPPH045/CgDPZV5bdub7wbOS2aaPkkKk9PvHH+f/wBQoAe5CncOvQev+en4fjSkjaeF2nPOc4/yfr1oAY+Flz93vgYGBT/ur1z2z7fX/P6UANKtsVmz8wPP6/5/zixby7z/AHmzn0yOPX+VADhlcdh0II6gfzo+YNuyF4A6cDPtQBXuE2y89ScggZz+FVWZ4xtwvtk/5/X9KAK8pCD5eeBgY5/WoWRmOMt14PtmgAMWMYPHBOB+VOf7u0/N024P5UAAGyU7c+mBjB/CnJHsbltrckDOcdMUAWYE3xLuO5mPPTJP1/x4q3GFkH93uCMAGgC1CqF/vK2304x29aFOU2denJPU0AKwJb5QxVSBnH+fTNTqcJztOeAF49/8/wCFAENy+8/eVs8fU1A2BGWO0ewH+fagChcvlN2Gb29vT6GmY2x57Hpx0/z/AFoAXzyXPzfQnvUkLs4UMq55XHH8/wDP40ATQvh/mXaGIPXgmhiVj9x1JFAFG4IQf3vcjHSsnUXDXDAHdxjp14/z9aAKxPJbadvA4PAGQenemAmTr908n6D/AD/OgCrcrudSW+Y4OahHmD7rSbe3P/1qAK8ZCgqfXJ5/nSIpjDHaOncHgUATpC0i/Ki/XNIsOWJH5EdO9AD1ORn5hxj8PX+v/wCqpMeUMYOfTHA4/wA/pQA9WZ42BPK9eOtPWHzAMD0JOeaAJG+Y7doHQEgdDn8qaxywywAxxnjg0ACBWPDbe3PNSRpypJ74yRQBYjTb/e4zw1P3bT/dPFAD0dVHv0+h9KQ/3eO+fXmgBduxsBj3B5/KpC2QrdfTHFAEmQjHkdO3OeaMbgOeQMYz/n86AG7h93jrxx0H9aFP+yvXPXigAZgo4+X+HOc8+tEibFHT2OPSgBo5bG1j0I/woCYXdz1/If5xQAgkwcNx7k9R/nmlDLub+poAUEKMnG5Sc57f59abIM7foAMf59/89wBH3LuzztHX0qOTeV+XK84Y9PyoAaOSBjPGPTrQwJPdcZ7e9ADZIt/4DvU1sCSOxXtkf59aANa1B915/wA/0/Ktq1/1hH48YOOPp/n88gF4cSK3yqcYwfTp/wDXz71I0W1i2flxnk9R3/z7fWgAViuflOT0yh9+akbmNR93jI789s//AK/egAuIlitXfdtcnjvnPTpWPOytIeGZm5BH+NAFGUibhd2MDbzjPfPWgnA245B5z3+o/LmgAVsR7s4Y88f179KdFLvb6juOnbt9KAI5JY1LAkYJGGwcnv27f561CJmZsf6vB5yMZNAEiz7HZW+bByPx7Yq5FMwUMvoSRjrnt7df/wBdAE+ORhtq9Menr/Ok+7zxk9ifu0ARyMqg8FuhUgdaoyo2N2SqsSSTx+X0xQBXeNpBn0xx170OrKNvZT1PU/54oAhdfLJX25wff/PvQW+Y7gw5J5GPwoAkjTjcPxxnkU+P92fmX6EZHPT/AD/SgCdVUyZ+Yk8keg+tXIcBxztOQevfmgCwsezdnOejH05/+vmhk2RN/eXH4f55oAmRQ4z1ZTndTpR5zBeCVPr1xzn/ADxQBVdBIx5YdRwOpqFB+7bGGXkZz2P/AOvpQBn3DLJyD1HAUf59z/8AqqNkMTNgbu+CP896AIp5TuYcbmI5PQY/zipYW86TbuVTjI5x34/pQBaXaCf4lxj1J/Xmnyy5wG6ZPy56n6UAUL2JyzcjPBPbJP6f5+lZd0csV+9z3GP89frQBUd+Omdp7f5x/n6005WIMu78BQBWnVlI2/dB+UY/Wm4U9ZZAfQA8UAU+ZDn5h77uaerFpvlwzfyx/nFAEiZSNV/X1NPCtzuP6CgBYo+OSMevHWn7cY47nn8O1AE0aZQ/Lgd8c7aHJjHVuTwAM9v/ANdADi3cZ3cdP/r/ANaawy7fKPqaAHKuXAxyT/Op1iUD5f4uMY5oAepx0Yt3x/n8acy449fagALbW+bHbPPT3p0bHdn07ev+f6UAOQc5bt19qkhbcPmHTnjvQA5m5b7u1cYI7/gacqYG1j7gigCM/MP90U7dtbB4LHgZ60AG3KnH4c5/z/8ArpzMGOchg3THb8aAGgZXO3jqSO3PQUyT5yMtjkgetADmH5jpk0xtyHnp05HUfWgB7jyun5+p9f8APpUUcm7cNvyjB60AIx2H/ZJ5FITvGc7UUgEjvQA1uX4/I0jDjDY+Y9v5ZoATdkc546Y+n+fyqW0OHXFAGvaP5hVd3fIHr3rYsPkBO3du9PTj345zzQBf89Vj+YL65/H8qs2nmT3OPqM8nH+FAC3Fs/2t41Xa5+7kf5/yastpzRK2/hUXLse3b9fSgCLWHsl0tWaTaynBA6sPSuX1LXrW1IXbIvGeFznP4fX8qAILa9XUW/dKx2gsQwwavW2gXlxE2LeQKD1C4oAZJol1GnzLt3NwPX6f57UyXSyjKrf3c7ecigCnHH5szbdu7OBk4/z/ACqa6xaKu4qGOeR69v6UAZ8d4y322RGAXp+H+RVxb/KsoVl288jceOeaANGC6hb/AHmPQ+v+f5U+PbcM2FKd8/zoAc8O9mjI9vmPT/P+etVZosr8uR254+lAETL5ef7yjJB9/aqzpzyC3Hcf5/yKAGhflUe/Tr0FKUyCvPPHA/Q/iaAEEK/xdjwCO/8AKnbGQbm6MMg57dDQBYhfEoPOMkDnn9auQ5baT0x9aAHQgyDbuVV6dPz/AK/nTsDK/MrY7HuO1ADo9qvuPzY6Aj7oqRyr7irbV7ZOSv6UARlss3XOcj/9f4VWuxiPCnc3Qc/jjNAFSSPnlvu+n8Oe369veoZR5UK/L168kbevt+FAFOQM5Zl+baMgDPOff+tTQ4dj1KseBnp1/wA96ALkSqQ2dzAdffrxUjfKi7SdrDPTr0oAo3p3HHGOi9v88YrNuoy77Tn8B1/HNAGbMNsgK+o53dP8/wCNNeQKv8SjJ7f5/wA/jQBHPJ5Z+6Dnke4/z3qEPCo+8v8A39A/pQBAF3fwht3T5ep/zijPOc8YHP4UATbto4b5f4j0xTkGyP734f4f/WoAeq7QdvzNnjI/z6VICiDll9SB0H+f880AOUMgC/MO349qANo/2cYGB3oAVOCrDp1BPHH9f/r0pOWZdwIz2HTPagCbyVUZ557Z/ripGb5d3bpzQApyu78jzwaMgMOdxx+dAC+Z+8P5+uKMqwzt5/nQBII1OeCOMZPY0p+VvlGOM4oAeH28d1ORgf0pzHKfewMYIPWgA2Djru4pu8Nu+bv97HSgAdVA2nnv1x9f/wBdSNw5+XH+HegBo49G5JBAPPH/AOumsmM7cj3FADFwq+nPGe2e1KJWBU529hg+9AB5nGQwHOM54ppnWRupHOKAIyMr8x78etOVufm+n0HFADWAJ7fU9vWmyN1/9CA9aAGyfN/CF59en+f61PC7YX39T160AbFhbSSxmRVaRVwCF647dK1bMPv+6Cp5BA6+2fzoAvNZCWVQw+Xs24bc/wAu9dF4L8a6fo5MN9ArTKcbh0PSgDodTtrP+0o7iJNsUnzYHbPbNUIdBm8ReJZolwLZQSxDcY44H4daAKtv8Ozfa6s3lt5a8BWU7Wx/k/8A6q7nwf8ABzT/ABm0zXFiyrZgdI+CeeoxQA60/Z1tbi9SZYXt4w3zDvjJ6D+voRWvrnw6aWVbe1tfLtYOMk8uTj/GgCCb4QyR2DuLOKORh8pfkjsPf8aw9c/Z6kvbQrHOvmMuWcrhB/jQByt98BYbIKzXH2h2OAsZ4zXJeIvg/qiCRrO03nqm9uPXPT/JFAHJDwf4k028klujs2j5VVS20+ntVTVbS70qCOZppJMnDI3BXnnn296AOi0W0kmtVby5GOAxJIBI44x+BH4VM8jQPtP7s4PB4z/n/PSgCbC7VZVI3ZBHUZqMnzF/iLEZyD0IoAqSKwChsqzdx2qAlVYqo3YyvPzcZ5/kf0oARp2MjfwDqc9gf/10BF/vDsRQAvlqxH3ee/YfjTktlODz1+8MYx/h/hQBMImyoVfXgkbSanjjZAFXHtjj/IoAnWP5zndzwc/Lj36enahY9235dzdSc9KAJFXDcDqOmOR9adOuEUbiT2x1H+RQBXkbypAPlbaDxw3FNm/1YTPB+99P/wBX5YoAoybQWZmZj2zwTzVeX95Gir/CeaAKtw/kpkbv71LausibuPTGP1P+IoAux8jGSWfBxnin+ZvVT8rDrnjn/wDXQBBdsPmPXjOc9P0rJnQKWPy7u/GPXFAFByrIfvdemeSPb9

Скачать книгу