Скачать книгу

производная функции) сделал небольшое отступление и сообщил, что 3/6 равно 1/2, а вовсе не 1/3, как считают некоторые из присутствующих. Реакция была такая: «Да? Хорошо…» Если бы я им сообщил, что это равно 1/10, реакция была бы точно такой же.

      В предыдущие два учебных года процентов десять-пятнадцать моих студентов систематически обнаруживали другое, не менее «нестандартное» математическое знание: они полагали, что любое число в степени –1 равно нулю. Причем это была не случайная фантазия, а хорошо усвоенное знание, потому что проявлялось неоднократно (даже после моих возражений) и срабатывало в обе стороны: если обнаруживалось что-либо в степени –1, то оно тут же занулялосъ, и наоборот, если что-либо требовалось занулить, подгонялась степень –1. Резюме то же самое: их так научили.

      Вот чему несчастных французских детей никак не могут по-настоящему научить, так это обращаться с дробями. Вообще, дроби (их сложение, умножение, а особенно деление) – постоянная головная боль моих студентов. Из своего пятилетнего опыта преподавания могу сообщить, что сколько-нибудь уверенно обращаться с дробями могли не больше десятой части моих первокурсников. Надо сказать, что арифметическая операция деления – это, пожалуй, самая трудная тема современного французского среднего образования. Подумайте сами, как объяснить ребенку, что такое деление: небось, станете распределять поровну шесть яблочек среди троих мальчиков? Как бы не так. Чтобы рассказать, как учат делению во французской школе, я опять вынужден обращаться к экспертам. Пусть не все, но кое-кто из вас еще помнит правило деления в столбик. Так вот, во французской школе операция деления вводится в виде формального алгоритма деления в столбик, который позволяет из двух чисел (делимого и делителя) путем строго определенных математических манипуляций получить третье число (результат деления). Разумеется, усвоить этот ужас можно, только проделав массу упражнений, и состоят эти упражнения вот в чем: несчастным ученикам предъявляются шарады в виде уже выполненного деления в столбик, в котором некоторые цифры опущены, и эти отсутствующие цифры требуется найти. Естественно, после всего этого, что бы тебе ни сказали про 3/6, согласишься на что угодно.

      Кроме описанных выше, так сказать, «систематических нестандартных знаний» (которым научили в школе) имеется много просто личных, случайных фантазий. Некоторые из них очень смешные. Например, один юноша как-то предложил переносить число из знаменателя в числитель с переменой знака. Другая студентка, когда косинус угла между двумя векторами у нее получился равным 8, заключила, что сам угол равен 360 градусов умножить на восемь, ну, и так далее. У меня есть целая коллекция подобных казусов, но не о них сейчас речь. В конце концов, то, что молодые люди еще способны фантазировать, – это не так уж плохо. Думать в школе их уже отучили (а тех, кого еще не отучили, в университете отучат – это уж точно), так пусть пока хоть так проявляют живость ума (пока они, живость и ум, еще есть).

      Довольно

Скачать книгу