Скачать книгу

на вопрос:

      Мог ли Галилей открыть закон всемирного тяготения?

      Выдающийся физик и веселый человек Ричард Фейнман так изложил предысторию закона гравитации:

      Во времена Кеплера некоторые считали, что планеты движутся вокруг Солнца, потому что невидимые ангелы толкают их вдоль орбиты. Это не так уж далеко от истины: ангелы толкают планеты, но не вдоль, а поперек орбиты, в направлении к ее центру.

      Стремясь к краткости, Фейнман опустил важный промежуточный этап. Галилей обходился вовсе без ангелов, считая круговое движение планеты вокруг Солнца движением естественным, свободным. Вопрос о размерах орбит и о скоростях планет оставался открытым, но Галилей видел массу открытых вопросов, что его не огорчало и не смущало, а лишь раззадоривало. Как и Кеплер, Галилей верил, что другие планеты по своей природе подобны Земле, и укрепил свою веру, увидев в телескоп гористую поверхность Луны. Его вера давала надежду, что изучение законов природы на Земле поможет понять и законы планетных движений.

      На Земле Галилей открыл закон свободного падения, а также закон движения тела, брошенного под углом к горизонту. Траектория такого движения, как знают ныне школьники, – парабола. Это свое открытие Галилей долго не публиковал. Он понимал, что результат получен в приближении “плоской Земли”: парабола тем точнее описывает траекторию, чем ее размер меньше по сравнению с радиусом Земли, то есть чем меньше начальная скорость, или же чем меньшую часть траектории рассматривать. Он не знал, какова форма траектории в случае “большого движения”, когда начальная скорость достаточно велика, и уже нельзя пренебречь сферичностью Земли.

      Трудность была теоретической, и эксперимент не мог помочь: чтобы в лаборатории заметить сферичность Земли, размеры лаборатории должны быть сравнимы с радиусом Земли. Галилей мог, однако, воспользоваться мысленным экспериментом, в чем был большой мастак. Надо было лишь придумать вопрос для мысленного экспериментатора.

      Например, такой. Если бросить шар в горизонтальном направлении с небольшой скоростью, он упадет на землю поблизости, двигаясь по крутой параболе. Если начальную скорость увеличить, парабола станет более пологой. А с какой скоростью надо бросить шар, чтобы, падая, он оставался на одном и том же удалении от поверхности Земли, уходящей “вниз” из-за своей сферичности?

      Эту задачу Галилей мог решить, пользуясь математикой не сложнее теоремы Пифагора, зная радиус Земли R и ускорение свободного падения g, им измеренное. Искомая скорость, как может убедиться нынешний школьник,

      V= (gR)1/2 ~ 8 км/сек.

      Это конечно же первая космическая скорость, то есть скорость, с которой нужно бросить шар, чтобы он стал искусственным спутником Земли. Впервые это удалось сделать в России в 1957 году, а в Италии семнадцатого века слов таких не знали и величину скорости назвали бы астрономической. Она была скорее

Скачать книгу