ТОП просматриваемых книг сайта:
Технологии будущего против криминала. Владимир Овчинский
Читать онлайн.Название Технологии будущего против криминала
Год выпуска 2017
isbn 978-5-9500726-4-2
Автор произведения Владимир Овчинский
Жанр История
Серия Коллекция Изборского клуба
Издательство Книжный мир
Глава 2.
Искусственный интеллект и «большие данные» для предупреждения и раскрытия преступлений
Джошуа Бенджо – профессор информатики в Монреальском университете, один из пионеров в области разработки методов глубинного обучения, считает, что после 2005 г. исследования в области искусственного интеллекта стали перспективным делом. И произошло все это благодаря концепции глубинного обучения – так называется подход к созданию компьютеров, наделенных искусственным интеллектом, черпающий вдохновение в нейробиологии. В последние годы концепция глубинного обучения стала тем самым локомотивом, который придал ускорение исследованиям в области искусственного интеллекта. Теперь крупнейшие ИТ-компании принялись вкладывать в технологию глубинного обучения миллиарды долларов (В мире науки [08/09] август/сентябрь 2016).
Принцип глубинного обучения заключается в моделировании нейронных сетей, которые постепенно «учатся» распознавать изображения, понимать речь и даже самостоятельно принимать решения. Технология глубинного обучения основана на использовании так называемых искусственных нейронных сетей – основного объекта нынешних исследований в области ИИ. Нет, виртуальные, искусственные нейронные сети вовсе не представляют собой точную копию настоящих нейросетей головного мозга, и функционируют они примитивнее: в основу их работы положены общие математические принципы обучения на примерах из обучающей выборки, что позволяет нейросетям распознавать всевозможные объекты на фотографиях (например, лица людей и т.д.) или переводить тексты, написанные на основных языках мира.
Технология глубинного обучения коренным образом изменила сам характер исследований в области ИИ, вдохнув новую жизнь в позабытые было амбициозные планы по созданию компьютерного зрения, распознаванию речи, обработке естественных языков, реализации проектов в области робототехники. Первые программы распознавания речи были созданы в 2012 г. (например, всем известный сервис Google Now). Затем стали появляться приложения, распознающие фотографии (данная функция в настоящее время интегрирована в сервис Google Photos).
До недавнего времени искусственные нейронные сети использовались в значительной степени для распознавания статичных образов. Однако постепенно получил известность другой тип нейро-сетей – рекуррентные нейронные сети, которые стали применяться в основном для анализа процессов, протекающих