Скачать книгу

Тело клетки и его ответвления (дендриты) принимают информацию от других клеток. Обработанные данные поступают по длинному нервному волокну нейрона (аксону) к синапсу, где сообщение передается следующему нейрону (см. рис. 1.1).

      Только в 1940–50-х годах было составлено детализированное описание процесса передачи электрических сигналов. Сегодня мы знаем, что информация передается в виде кратких импульсов – потенциалов действия – с небольшим напряжением (всего 0,1 вольта) и длительностью в несколько тысячных секунды. Такие импульсы быстро преодолевают огромные расстояния, развивая скорость до 120 м/с.

      Путь нервного импульса завершается у синапса, где происходит выброс молекул нейромедиаторов, которые передают сигнал через разрыв между нейронами. Оказавшись на другой стороне, молекулы сразу запускают электрический сигнал на поверхности принимающего нейрона. И тогда нейрон либо посылает собственный сигнал, либо временно подавляет его, снижая вероятность реакции на другие входящие сигналы. Оба варианта важны для направления потока информации, из которой в конечном счете состоят наши мысли и чувства.

      Рис. 1.1. Строение нейрона

      Сложность нейронных сетей поразительна. Наш мозг содержит примерно 86 млрд нейронов, у каждого из них примерно 1000 синапсов. Если пересчитывать их по одному за секунду, не хватит и 30 млн лет.

      В отличие от компонентов компьютера, наши нейронные сети гибкие благодаря особому классу нейромедиаторов – нейромодуляторов, которые по действию похожи на регуляторы громкости. Они меняют количество других нейромедиаторов в синапсе и степень реакции нейронов на входящие сигналы. Одни изменения отвечают на сиюминутные события, а другие перестраивают мозг надолго – считается, что так формируются воспоминания.

      Многие нейромодуляторы действуют только на определенные нейроны, а другие способны проникать сквозь обширные участки тканей мозга и вызывать масштабные изменения. Например, оксид азота – настолько маленькая молекула (10-я из самых маленьких молекул), что легко перемещается от выбросившего ее нейрона. Она воздействует на принимающие нейроны и на количество выпускаемых ими с каждым импульсом нейромедиаторов, провоцируя изменения, необходимые для формирования памяти в гиппокампе.

      Под воздействием множества химических передатчиков и модуляторов мозг постоянно меняется, позволяя нам учиться, меняться и адаптироваться к миру вокруг нас.

Как наш мозг стал таким сложным?

      14 млн лет назад в Африке жила обезьянка. Она была очень умной, но мозг большинства ее потомков (орангутанов, горилл и шимпанзе), похоже, не сильно изменился по сравнению с той ветвью ее семейства, из которой вышли современные люди. Что сделало нас другими?

      Мы можем только порассуждать на тему, почему около 2,5 млн лет назад наш мозг начал расти, но возможно, что дело в счастливой случайности.

      У других приматов «кусающая» мышца

Скачать книгу