ТОП просматриваемых книг сайта:
Футболоматика: как благодаря математике «Барселона» выигрывает, Роналду забивает, а букмекеры зарабатывают состояния. Дэвид Самптер
Читать онлайн.Год выпуска 2016
isbn 978-5-04-091272-8
Автор произведения Дэвид Самптер
Жанр Спорт, фитнес
Серия Спорт. Лучший мировой опыт
Издательство Эксмо
В обоих наборах данных Борткевич нашел значительное соответствие с распределением Пуассона. Смерти от ударов лошади были редкими. Из 280 полков, которые он изучал, в 144 не было ни одного смертельного случая. Но в двух невезучих полках были зафиксированы по четыре смерти за один год. Используя распределение Пуассона, Борткевич смог показать, что в этих полках не обращались с лошадьми хуже, чем в других, – в тот год им просто не повезло. Возможно (а возможно, и нет), футбол важнее вопросов жизни и смерти, но все три подчиняются одним и тем же правилам.
Сравнение с распределением Пуассона – одна из первых вещей, которые я делаю, когда получаю новые данные. Иногда коллега приходит в мой кабинет с недавно собранными экспериментальными результатами. «Странно, – говорит он. – Большая часть рыбы никогда не плавает вблизи хищника, но есть одна рыбина, которая проплыла мимо него четыре раза! Она должна быть очень смелой или что-то в этом роде». Спустя три минуты я черчу распределение Пуассона и накладываю его на данные моего коллеги. «Нет, твоя рыбина не была особенно смелой. Это была всего лишь статистическая необходимость». Быть преследуемым хищником раз за разом равносильно разгромному поражению со счетом 5:0. Плохо, когда это случается, но это может произойти с каждым.
Распределение Пуассона является нашим первым примером математической аналогии. Оно работает во многих контекстах. Оно работает для футбольных матчей, для лампочки и для смертей от удара лошади. Всякий раз, когда есть основания предположить, что события могут произойти неожиданно, в любое время и независимо от того, сколько событий уже произошло, следует ожидать распределения Пуассона.
Если отойти от футбола, современное использование распределения Пуассона в большинстве своем продолжает традицию, начало которой положил Борткевич. У статистиков, похоже, есть извращенное очарование смертью, травмами и несчастными случаями. Или, может быть, мы просто платим им за решение тех проблем, которые могут случиться с нами. Таким образом, нам не придется о них думать. Каковы бы ни были причины их интереса к неудачам, статистики обнаружили распределение Пуассона в автомобильных авариях, столкновениях с грузовиками, травмах головы, отказах двигателей в самолетах, банкротствах, самоубийствах, убийствах, несчастных случаях на работе и количестве опасных строительных объектов[7]. Они даже обнаружили его в количестве войн с 1480 по 1940 год. И когда они заканчивают смертями и травмами, то ищут распределение
7
Некоторые из этих примеров перечислены более подробно в Letkowski, J. 2012. Applications of the Poisson probability distribution.