ТОП просматриваемых книг сайта:
BIG DATA. Вся технология в одной книге. Андреас Вайгенд
Читать онлайн.Название BIG DATA. Вся технология в одной книге
Год выпуска 2017
isbn 978-5-04-094117-9
Автор произведения Андреас Вайгенд
Жанр Базы данных
Серия Top Business Awards
Издательство Эксмо
Неудивительно, что одним из первых «инфоперерабатывающих заводов» стало предприятие розничной торговли – компания Amazon. Преуспевающий магазин обязан знать, какие товары, интересующие потенциальных покупателей, должны быть в наличии, а для этого нужно отслеживать данные о товарообороте, ценах, рекламе и потребительских предпочтениях своей целевой аудитории.
Двести лет назад практически вся информация, нужная хозяину магазина, заключалась в данных об остатках товара на полках и денег в кассе. По окончании каждого торгового дня эти данные вписывали чернильной ручкой в гроссбух. При выборе покупок из примерно одинакового ассортимента в одной и той же ценовой категории покупатель руководствовался информацией о надежности, привлекательностью упаковки или же мнением друзей, соседей и родственников. Примерно 150 лет назад несколько компаний, самыми известными из которых были Montgomery Ward и Sears & Roebuck Company, порадовали жителей провинциальных американских городков каталогами для заказа товаров почтой. Эти инноваторы своего времени знали, что именно обычно заказывает конкретный покупатель и куда ему доставляют товары, и поэтому могли определять уровень спроса на отдельные виды продукции в разрезе регионов. Сто лет назад, для того чтобы прогнозировать спрос и оптимизировать товарные запасы, компании, занимавшиеся торговлей по каталогам, открывали и шоурумы, и обычные магазины, а также держали целые армии аналитиков, прочесывавших статистику продаж[27]. Спустя еще пятьдесят лет в розничной торговле опять произошли важные перемены. С появлением системы почтовых индексов в США рассылочным фирмам и их торговым точкам стало проще отслеживать особенности своих потребителей[28]. В течение двух следующих десятилетий компании смогли собрать подробную демографическую информацию о людях, проживающих в различных географических областях. А вошедшие в обиход американцев с середины 1960-х годов кредитные карточки позволили собирать данные о покупках конкретного потребителя. До наступления эпохи интернета это был предел детализации личных данных – где человек живет и сколько и где он тратит.
Основанная в 1969 году компания-брокер данных Acxiom и ряд других вдоль и поперек анализировали данные домохозяйств, распределяя частных лиц по потребительским нишам, в которых фигурировали, например, сегменты «Образцово-показательных граждан», «Барских домов», «Селян с дробовиками» и «Пригородных наседок». И это еще не самые худшие образцы социальной стереотипизации[29]. В качестве источников информации у этих брокеров
27
Madison, James H., “Changing Patterns of Urban Retailing: The 1920s”, Business and Economic History, vol. 5 (1976), p. 104, http://www.thebhc.org/sites/default/files/beh/BEHprint/v005/p0102-p0111.pdf.
28
Clark, Anna, “The Tyranny of the ZIP Code”, New Republic, March 8, 2013, https://newrepublic.com/article/112558/zip-code-history-how-they-define-us.
29
“Образцово-показательные граждане” – название одного из сегментов Acxiom. См. Hicken, Melanie, “What Type of Consumer Are You?”, CNNMoney, April 19, 2013, http://money.cnn.com/2013/04/18/pf/consumer-type/. “Барские дома” и “Селяне с дробовиками” – две категории программы «Potential Rating Index by Zip Markets» (PRIZM), которую разработала маркетинговая фирма Claritas, созданная в 1990-х годах. Сейчас Claritas – одно из подразделений Nielsen Company – компании, собирающей для производителей информацию о продажах их продукции в рознице и измеряющей телеаудиторию. См. Kotler, Philip, and Kevin Lane Keller, Marketing Management 14 (Upper Saddle River, NJ: Prentice-Hall, 2012), p. 215. “Пригородные наседки” – категория базы данных розничной сети Best Buy’, которая содержит информацию о 75 миллионах домохозяйств-покупателей и является одной из самых смелых попыток крупной розницы использовать данные для персонализации предложений. См. Kotler, Philip, and Kevin Lane Keller, Marketing Management 14 (Upper Saddle River, NJ: Prentice-Hall, 2012), p. 71; и Zmuda, Natalie, “Best Buy Touts Data Project as Key to Turnaround”, Advertising Age, February 27, 2014, http://adage.com/article/datadriven-marketing/buy-touts-data-project-key-turnaround/291897.