Скачать книгу

WB. Causal roles of mitochondrial dynamics in longevity and healthy aging. EMBO Rep. 2019;20(12):e48395. https://pubmed.ncbi.nlm.nih.gov/31667999/

      147

      Hill S, Van Remmen H. Mitochondrial stress signaling in longevity: a new role for mitochondrial function in aging. Redox Biol. 2014;2:936–44. https://pubmed.ncbi.nlm.nih.gov/25180170/

      148

      López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. https://pubmed.ncbi.nlm.nih.gov/23746838/

      149

      Gonzalez-Freire M, de Cabo R, Bernier M, et al. Reconsidering the role of mitochondria in aging. J Gerontol A Biol Sci Med Sci. 2015;70(11):1334–42. https://pubmed.ncbi.nlm.nih.gov/25995290/

      150

      Sgarbi G, Matarrese P, Pinti M, et al. Mitochondria hyperfusion and elevated autophagic activity are key mechanisms for cellular bioenergetic preservation in centenarians. Aging (Albany NY). 2014;6(4):296–310. https://pubmed.ncbi.nlm.nih.gov/24799450/

      151

      Sengupta P. The laboratory rat: relating its age with human’s. Int J Prev Med. 2013;4(6):624–30. https://pubmed.ncbi.nlm.nih.gov/23930179/

      152

      Corbisier P, Remacle J. Influence of the energetic pattern of mitochondria in cell ageing. Mech Ageing Dev. 1993;71(1):47–58. https://pubmed.ncbi.nlm.nih.gov/8309283/

      153

      Burkewitz K, Zhang Y, Mair WB. AMPK at the nexus of energetics and aging. Cell Metab. 2014;20(1):10–25. https://pubmed.ncbi.nlm.nih.gov/24726383/

      154

      Ruiz R, Pérez-Villegas EM, Manuel Carrión Á. AMPK function in aging process. Curr Drug Targets. 2016;17(8):932–41. https://pubmed.ncbi.nlm.nih.gov/26521771/

      155

      Wu S, Zou MH. AMPK, mitochondrial function, and cardiovascular disease. Int J Mol Sci. 2020;21(14):4987. https://pubmed.ncbi.nlm.nih.gov/32679729/

      156

      Agency for Healthcare Research and Quality (AHRQ). Medical Expenditure Panel Survey (MEPS) 2013–2019. ClinCalc DrugStats Database version 2021.10. https://clincalc.com/DrugStats/. Accessed May 22, 2023.; https://clincalc.com/DrugStats/

      157

      Inzucchi SE, Fonseca V. Dethroning the king?: the future of metformin as first line therapy in type 2 diabetes. J Diabetes Complications. 2019;33(6):462–4. https://pubmed.ncbi.nlm.nih.gov/31003925/

      158

      Campbell JM, Bellman SM, Stephenson MD, Lisy K. Metformin reduces all-cause mortality and diseases of ageing independent of its effect on diabetes control: a systematic review and meta-analysis. Ageing Res Rev. 2017;40:31–44. https://pubmed.ncbi.nlm.nih.gov/28802803/

      159

      Glucophage® / Glucophage® XR: Response to FDA Comments of 10 12 00. U.S. Food & Drug Administration: Drugs@FDA. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=021202. Accessed April 25, 2021.; https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=021202

      160

      Braun B, Eze P, Stephens BR, et al. Impact of metformin on peak aerobic capacity. Appl Physiol Nutr Metab. 2008;33(1):61–7. https://pubmed.ncbi.nlm.nih.gov/18347654/

      161

      Walton RG, Dungan CM, Long DE, et al. Metformin blunts muscle hypertrophy in response to progressive resistance exercise training in older adults: a randomized, double-blind, placebo-controlled, multicenter trial: the MASTERS trial [published correction appears in Aging Cell. 2020;19(3):e13098]. Aging Cell. 2019;18(6):e13039. https://pubmed.ncbi.nlm.nih.gov/31557380/

      162

      Burkewitz K, Zhang Y, Mair WB. AMPK at the nexus of energetics and aging. Cell Metab. 2014;20(1):10–25. https://pubmed.ncbi.nlm.nih.gov/24726383/

      163

      Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403. https://pubmed.ncbi.nlm.nih.gov/11832527/

      164

      Iannello S, Camuto M, Cavaleri A, et al. Effects of short-term metformin treatment on insulin sensitivity of blood glucose and free fatty acids. Diabetes Obes Metab. 2004;6(1):8–15. https://pubmed.ncbi.nlm.nih.gov/14686957/

      165

      Wen H, Gris D, Lei Y, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. 2011;12(5):408–15. https://pubmed.ncbi.nlm.nih.gov/21478880/

      166

      Carta G, Murru E, Banni S, Manca C. Palmitic acid: physiological role, metabolism and nutritional implications. Front Physiol. 2017;8:902. https://pubmed.ncbi.nlm.nih.gov/29167646/

      167

      Fatima S, Hu X, Gong RH, et al. Palmitic acid is an intracellular signaling molecule involved in disease development. Cell Mol Life Sci. 2019;76(13):2547–57. https://pubmed.ncbi.nlm.nih.gov/30968170/

      168

      Kirwan AM, Lenighan YM, O’Reilly ME, McGillicuddy FC, Roche HM. Nutritional modulation of metabolic inflammation. Biochem Soc Trans. 2017;45(4):979–85. https://pubmed.ncbi.nlm.nih.gov/28710289/

      169

      Arguello G, Balboa E, Arrese M, Zanlungo S. Recent insights on the role of cholesterol in non-alcoholic fatty liver disease. Biochim Biophys Acta. 2015;1852(9):1765–78. https://pubmed.ncbi.nlm.nih.gov/26027904/

      170

      Wang XJ, Malhi H. Nonalcoholic fatty liver disease. Ann Intern Med. 2018;169(9):ITC65–80. https://pubmed.ncbi.nlm.nih.gov/30398639/

      171

      Hydes T, Alam U, Cuthbertson DJ. The impact of macronutrient intake on non-alcoholic fatty liver disease (NAFLD): too much fat, too much carbohydrate, or just too many calories? Front Nutr. 2021;8:640557. https://pubmed.ncbi.nlm.nih.gov/33665203/

      172

      Luukkonen PK, Sädevirta S, Zhou Y, et al. Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars. Diabetes Care. 2018;41(8):1732–9. https://pubmed.ncbi.nlm.nih.gov/29844096/

      173

      Luukkonen PK, Sädevirta S, Zhou Y, et al. Saturated fat is more metabolically harmful for the human liver than unsaturated fat or simple sugars. Diabetes Care. 2018;41(8):1732–9. https://pubmed.ncbi.nlm.nih.gov/29844096/

      174

      Kirwan AM, Lenighan YM, O’Reilly ME, McGillicuddy FC, Roche HM. Nutritional modulation of metabolic inflammation. Biochem Soc Trans. 2017;45(4):979–85. https://pubmed.ncbi.nlm.nih.gov/28710289/

      175

      Parry SA, Rosqvist F, Mozes FE, et al. Intrahepatic fat and postprandial glycemia increase after consumption of a diet enriched in saturated fat compared

Скачать книгу