Скачать книгу

подход предлагает различные перспективы и масштабы, выходящие за рамки абстрактных обещаний искусственного интеллекта или новейших моделей машинного обучения. Цель состоит в том, чтобы понять ИИ в более широком контексте, пройдя через множество различных ландшафтов вычислений и увидев, как они связаны между собой[23].

      Атласы актуальны и в другом смысле. Область ИИ явно пытается запечатлеть планету в удобочитаемой для вычислений форме. И это не метафора, а прямое стремление индустрии. Индустрия ИИ создает и нормализует собственные карты, как централизованный взгляд на человеческое движение, общение и труд. Некоторые ученые в области ИИ заявили о желании захватить мир и вытеснить другие формы познания. Профессор ИИ Фей-Фей Ли описывает свой проект ImageNet как процесс, направленный на «нанесение на карту всего мира объектов»[24]. В своем учебнике Рассел и Норвиг описывают искусственный интеллект следующим образом: «Механизм, относящийся к любой интеллектуальной задаче; это поистине универсальная область»[25]. Один из основателей искусственного интеллекта и ранний экспериментатор в области распознавания лиц Вуди Бледсоу выразился наиболее прямолинейно: «В долгосрочной перспективе ИИ – это единственная наука»[26]. Идея состоит в том, чтобы не создать атлас мира, а стать атласом. Этот колонизаторский импульс централизует власть в сфере ИИ: он определяет, как измеряется и определяется мир, одновременно отрицая, что это по своей сути политическая деятельность.

      Не претендуя на универсальность, книга, которую вы держите в руках, представляет собой частичный отчет. Увлекая вас в мои исследования, я надеюсь показать вам, как формировались мои взгляды. Мы столкнемся с хорошо посещаемыми и менее известными ландшафтами вычислений: шахтами, длинными коридорами энергопоглощающих центров обработки данных, архивами, базами данных изображений и освещенными ангарами. Эти места включены не только для иллюстрации материальной конструкции ИИ и его идеологии, но и для того, чтобы «осветить неизбежно субъективные и политические аспекты картирования и предоставить альтернативу гегемонистским и авторитетным подходам», как пишет исследователь медиа Шеннон Мэттерн[27].

      Модели понимания систем уже давно опираются на идеалы прозрачности. Как я писала вместе с исследователем СМИ Майком Ананни, способность видеть систему иногда приравнивается к способности знать, как она работает и как ею управлять[28]. Но эта тенденция имеет серьезные ограничения. В случае с ИИ у нас нет «черного ящика», нет секрета, который можно разоблачить, а есть множество переплетенных систем власти. Полная прозрачность является невозможной целью. Скорее, мы лучше понимаем роль ИИ в мире, изучая его материальную архитектуру, контекстную среду и преобладающую политику, а также прослеживая, как они связаны между собой.

      Мои размышления опираются на такие дисциплины, как исследования науки и технологий,

Скачать книгу


<p>23</p>

For an account of the practices of data colonization, see «Colonized by Data»; and Mbembé, Critique of Black Reason.

<p>24</p>

Fei-Fei Li quoted in Gershgorn, «Data That Transformed AI Research.»

<p>25</p>

Russell and Norvig, Artificial Intelligence, 1.

<p>26</p>

Bledsoe quoted in McCorduck, Machines Who Think, 136.

<p>27</p>

Mattern, Code and Clay, Data and Dirt, xxxiv-xxxv.

<p>28</p>

Ananny and Crawford, «Seeing without Knowing.»