ТОП просматриваемых книг сайта:
.
Читать онлайн.5. Sean A y B conjuntos. Probar que existe f : A → B inyectiva si y solo si existe g : B → A suprayectiva.
(Ayuda: Aplicar el problema 1.4).
6. Sea f : A → B una aplicación. Probar:
(i) f es inyectiva si y solo si para todo par de aplicaciones h, g : X → A tales que f ∘ g = f ∘ h, entonces g = h.
(ii) f es suprajectiva si y solo si para todo par de aplicaciones h, g : B → X tales que g ∘ f = h ∘ f, entonces g = h.
7. Sean f : A → B y g : B → C aplicaciones biyectivas. Probar que
(g ∘ f)−1 = f−1 ∘ g−1.
(Nota: A veces este se denomina el Dressing-Undressing Principle, pues nos desvestimos en orden opuesto al que nos vestimos).
8. Sean f : A → B y g : C → D aplicaciones. Se define la aplicación producto f × g : A × C → B × D como (f × g)((x, y)) = (f(x), g(y)). Estudiar cuándo f × g es inyectiva o suprayectiva en función de f y de g.
9. Para cada una de las siguientes relaciones sobre ℤ probar si son relaciones de equivalencia y en caso afirmativo, describir las clases de equivalencia.
(i) R = {(x, y) ∈ ℤ2 | x + y < 3}.
(ii) R = {(x, y) ∈ ℤ2 | x + y es par}.
(iii) R = {(x, y) ∈ ℤ2 | x = y o x = −y}.
(iv) R = {(x, y) ∈ ℤ2 | y = x + 1}.
10. En el conjunto ℤ × ℤ×, donde ℤ× = ℤ − {0}, decimos que (a, b) y (c, d) están relacionados si ad = bc. Probar que esta relación es de equivalencia.
(Nota: Los números racionales se definen como las clases de equivalencia de esta relación).
11. Sea n > 0 un entero. Definimos la siguiente relación en ℤ. Decimos que a, b ∈ ℤ están relacionados si n divide a a − b. Probar que esta relación es de equivalencia y que la clase de equivalencia de a es
a + nℤ = {a + nz | z ∈ ℤ}.
12. Probar que las siguientes aplicaciones son biyectivas:
(i) f : ℕ× → P = {2, 4, 6, …} y g : ℕ× → I = {1, 3, 5, …} dadas por f(n) = 2n y g(n) = 2n − 1. Concluir que el conjunto de números pares e impares positivos son numerables.
(ii) Si m ∈ ℕ×, la aplicación f : ℕ× → {n ∈ ℕ× | n > m} dada por f(n) = n + m.
(iii) f : ℕ× → ℤ dada por f(n) = n/2 si n es par, y f(n) = (1 − n)/2 si n es impar. Concluir que ℤ es numerable.
(iv) f : ℕ× × ℕ× → ℕ× dada por f(n, m) = 2n−1(2m − 1).
13. Si f : A → B es suprayectiva y A es numerable, entonces B es finito o numerable.
(Nota: Se pueden aplicar el problema 1.5 y el corolario 1.11. También podemos construir g : B → A inyectiva utilizando el teorema del buen orden en ℕ. Como A es numerable, entonces A está bien ordenado. Si b ∈ B, sea a el menor elemento de f−1({b}) y podemos definir g(b) = a).
14. Sea A un conjunto numerable y sea B un conjunto. Probar las siguientes propiedades.
(i) Si B es finito, entonces A − B es numerable.
(ii) Si B es finito, entonces A ∪ B es numerable.
(iii) Si B es numerable, entonces A ∪ B es numerable. Concluir por inducción que la unión de un número finito de conjuntos numerables es numerable.
(iv) Si B es numerable, entonces A × B es numerable. Concluir por inducción que el producto cartesiano de un número finito de conjuntos numerables es numerable.
(Ayuda: Para (i), utilizar el teorema 1.10. Para (ii), podemos suponer por (i) que A ∩ B = ∅. Si B tiene m elementos, sabemos por el problema 1.12 (ii) que existe f : {n ∈ ℕ× | n > m} → A biyectiva. Para (iii), por el mismo problema existen f : P → A y g : I → B biyectivas. Aplicar el problema 1.13. Para (iv), aplicar el problema 1.12 (iv)).
15. Probar que ℚ es numerable, utilizando que f : ℤ × ℤ× → ℚ, definida por f(n, m) = n/m, es suprayectiva.
16. Si An es finito o numerable para todo n ∈ ℕ×, probar que
es finito o numerable.
(Ayuda: Por hipótesis, existe fn : ℕ× → An suprayectiva. Definimos
dada por f(n, m) = fn(m). Probar que f es suprayectiva).
17. Sea ℚ[x] el conjunto de los polinomios con coeficientes en ℚ.
(i) Probar que ℚ[x] es numerable.
(ii) Un número complejo α es algebraico sobre ℚ si existe un polinomio 0 ≠ f con coeficientes en ℚ, tal que f(α) = 0. Utilizando que todo polinomio f de grado n tiene (como mucho) n ráıces complejas, probar que el conjunto de los números algebraicos es numerable.
(Ayuda: Para (i), agrupar los polinomios según grado y aplicar los problemas 1.16 y 1.14 (iv). Para (ii), volver a aplicar el problema 1.16).
18. Comprobar el siguiente argumento de D. Keyt para probar que ℝ no es numerable. Definimos una aplicación inyectiva f : P (ℕ) → [0, 1/9] de la manera siguiente. Si S ⊆ ℕ, entonces f(S) es el número real 0.a0a1a2 … an …, donde an = 0 si n ∉ S, y an = 1 si n ∈ S. Por ejemplo, f(∅) = 0, f(N) = 0.11111 … = 1/9, f({0, 1, 3, 5}) = 0.110101, etc.
Utilizando los teoremas