Аннотация

It is easy to imagine that a future populated with an ever-increasing number of mobile and pervasive devices that record our minute goings and doings will significantly expand the amount of information that will be collected, stored, processed, and shared about us by both corporations and governments. The vast majority of this data is likely to benefit us greatly—making our lives more convenient, efficient, and safer through custom-tailored and context-aware services that anticipate what we need, where we need it, and when we need it. But beneath all this convenience, efficiency, and safety lurks the risk of losing control and awareness of what is known about us in the many different contexts of our lives. Eventually, we may find ourselves in a situation where something we said or did will be misinterpreted and held against us, even if the activities were perfectly innocuous at the time. Even more concerning, privacy implications rarely manifest as an explicit, tangible harm. Instead, most privacy harms manifest as an absence of opportunity, which may go unnoticed even though it may substantially impact our lives. In this Synthesis Lecture, we dissect and discuss the privacy implications of mobile and pervasive computing technology. For this purpose, we not only look at how mobile and pervasive computing technology affects our expectations of—and ability to enjoy—privacy, but also look at what constitutes «privacy» in the first place, and why we should care about maintaining it. We describe key characteristics of mobile and pervasive computing technology and how those characteristics lead to privacy implications. We discuss seven approaches that can help support end-user privacy in the design of mobile and pervasive computing technologies, and set forward six challenges that will need to be addressed by future research. The prime target audience of this lecture are researchers and practitioners working in mobile and pervasive computing who want to better understand and account for the nuanced privacy implications of the technologies they are creating. Those new to either mobile and pervasive computing or privacy may also benefit from reading this book to gain an overview and deeper understanding of this highly interdisciplinary and dynamic field.

Аннотация

The idea of this book grew out of a symposium that was held at Stony Brook in September 2012 in celebration of David S.Warren's fundamental contributions to Computer Science and the area of Logic Programming in particular. Logic Programming (LP) is at the nexus of Knowledge Representation, Artificial Intelligence, Mathematical Logic, Databases, and Programming Languages. It is fascinating and intellectually stimulating due to the fundamental interplay among theory, systems, and applications brought about by logic. Logic programs are more declarative in the sense that they strive to be logical specifications of «what» to do rather than «how» to do it, and thus they are high-level and easier to understand and maintain. Yet, without being given an actual algorithm, LP systems implement the logical specifications automatically. Several books cover the basics of LP but focus mostly on the Prolog language with its incomplete control strategy and non-logical features. At the same time, there is generally a lack of accessible yet comprehensive collections of articles covering the key aspects in declarative LP. These aspects include, among others, well-founded vs. stable model semantics for negation, constraints, object-oriented LP, updates, probabilistic LP, and evaluation methods, including top-down vs. bottom-up, and tabling. For systems, the situation is even less satisfactory, lacking accessible literature that can help train the new crop of developers, practitioners, and researchers. There are a few guides onWarren’s Abstract Machine (WAM), which underlies most implementations of Prolog, but very little exists on what is needed for constructing a state-of-the-art declarative LP inference engine. Contrast this with the literature on, say, Compilers, where one can first study a book on the general principles and algorithms and then dive in the particulars of a specific compiler. Such resources greatly facilitate the ability to start making meaningful contributions quickly. There is also a dearth of articles about systems that support truly declarative languages, especially those that tie into first-order logic, mathematical programming, and constraint solving. LP helps solve challenging problems in a wide range of application areas, but in-depth analysis of their connection with LP language abstractions and LP implementation methods is lacking. Also, rare are surveys of challenging application areas of LP, such as Bioinformatics, Natural Language Processing, Verification, and Planning. The goal of this book is to help fill in the previously mentioned void in the LP literature. It offers a number of overviews on key aspects of LP that are suitable for researchers and practitioners as well as graduate students. The following chapters in theory, systems, and applications of LP are included.

Аннотация

Аннотация

Computers and computer networks are one of the most incredible inventions of the 20th century, having an ever-expanding role in our daily lives by enabling complex human activities in areas such as entertainment, education, and commerce. One of the most challenging problems in computer science for the 21st century is to improve the design of distributed systems where computing devices have to work together as a team to achieve common goals. In this book, I have tried to gently introduce the general reader to some of the most fundamental issues and classical results of computer science underlying the design of algorithms for distributed systems, so that the reader can get a feel of the nature of this exciting and fascinating field called distributed computing. The book will appeal to the educated layperson and requires no computer-related background. I strongly suspect that also most computer knowledgeable readers will be able to learn something new.