Скачать книгу

151

      155  152

      156  153

      157  154

      158  155

      159  156

      160  157

      161  158

      162  159

      163  160

      164 161

      165 162

      166 163

      167  164

      168  165

      169  166

      170  167

      171  168

      172  169

      173  170

      174  171

      175 172

      176  173

      177  174

      178  175

      179  176

      180  177

      181  178

      182  179

      183  180

      184  181

      185  182

      186  183

      187  184

      188  185

      189  186

      190  187

      191  188

      192  189

      193  190

      194  191

      195  192

      196  193

      197  194

      198  195

      199  196

      200  197

      201  198

      202  199

      203  200

      204  201

      205  202

      206  203

      207  204

      208  205

      209  207

      210  208

      211  209

      212 210

      213  211

      214  212

      215  213

      216  214

      217  215

      218  216

      219  217

      220  218

      221  219

      222  220

      223  221

      224  222

      225  223

      226  224

      227  225

      228  226

      229  227

      230  229

      231  230

      232  231

      233  232

      234  233

      235  234

      236  235

      237  236

      238  237

      239  238

      240  239

      241  240

      242  241

      243  242

      244  243

      245  244

      246  245

      247  246

      248  247

      249  249

      250  250

      251  251

      252 252

      253 253

      254  254

      Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA 01915-6106

       Advances in Data Engineering and Machine Learning

       Series Editor: M. Niranjanamurthy, PhD, Juanying XIE, PhD, and Ramiz Aliguliyev, PhD

      Scope: Data engineering is the aspect of data science that focuses on practical applications of data collection and analysis. For all the work that data scientists do to answer questions using large sets of information, there have to be mechanisms for collecting and validating that information. Data engineers are responsible for finding trends in data sets and developing algorithms to help make raw data more useful to the enterprise.

      It is important to have business goals in line when working with data, especially for companies that handle large and complex datasets and databases. Data Engineering Contains DevOps, Data Science, and Machine Learning Engineering. DevOps (development and operations) is an enterprise software development phrase used to mean a type of agile relationship between development and IT operations. The goal of DevOps is to change and improve the relationship by advocating better communication and collaboration between these two business units. Data science is the study of data. It involves developing methods of recording, storing, and analyzing data to effectively extract useful information. The goal of data science is to gain insights and knowledge from any type of data — both structured and unstructured.

      Machine learning engineers are sophisticated programmers who develop machines and systems that can learn and apply knowledge without specific direction. Machine learning engineering is the process of using software engineering principles, and analytical and data science knowledge, and combining both of those in order to take an ML model that’s created and making it available for use by the product or the consumers. “Advances in Data Engineering and Machine Learning Engineering” will reach a wide audience including data scientists, engineers, industry, researchers and students working in the field of Data Engineering and Machine Learning Engineering.

      Publishers at Scrivener Martin Scrivener ([email protected]) Phillip Carmical ([email protected])

Скачать книгу