ТОП просматриваемых книг сайта:
Polysaccharides. Группа авторов
Читать онлайн.Название Polysaccharides
Год выпуска 0
isbn 9781119711407
Автор произведения Группа авторов
Жанр Химия
Издательство John Wiley & Sons Limited
18. Mati-Baouche, N. et al., Chitosan as an adhesive. Eur. Polym. J., 60, 198–212, 2014.
19. Patel, A.K. et al., Preparation of chitosan-based adhesives and assessment of their mechanical properties. J. Appl. Polym. Sci., 127, 5, 3869–3876, 2013.
20. Tsigos, I. et al., Chitin deacetylases: New, versatile tools in biotechnology. Trends Biotechnol., 18, 7, 305–312, 2000.
21. Usman, A. et al., Algal polysaccharides, novel application, and outlook, in: Algae Based Polymers, Blends, and Composites, pp. 115–153, Elsevier, Amsterdam, 2017.
22. Lubián, L.M., Concentrating cultured marine microalgae with chitosan. Aquacult. Eng., 8, 4, 257–265, 1989.
23. Chua, E.T. et al., Efficient Harvesting of Nannochloropsis Microalgae via Optimized Chitosan-Mediated Flocculation. Global Challenges, 3, 1, 1800038, 2019.
24. Zhu, L., Li, Z., Hiltunen, E., Microalgae Chlorella vulgaris biomass harvesting by natural flocculant: Effects on biomass sedimentation, spent medium recycling and lipid extraction. Biotechnol. Biofuels, 11, 1, 183, 2018.
25. Rashid, N., Rehman, S.U., Han, J.-I., Rapid harvesting of freshwater microalgae using chitosan. Process Biochem., 48, 7, 1107–1110, 2013.
26. Alba, K. and Kontogiorgos, V., Seaweed Polysaccharides (Agar, Alginate Carrageenan), in: Encyclopedia of Food Chemistry, L. Melton, F. Shahidi, P. Varelis, (Eds.), pp. 240–250, Academic Press, Oxford, 2019.
27. Venkatesan, J. et al., Role of Alginate in Bone Tissue Engineering, in: Advances in Food and Nutrition Research, S.-K. Kim, (Ed.), pp. 45–57, Academic Press, Cambridge, Massachusetts, 2014.
28. Nesic, A.R. and Seslija, S.I., The influence of nanofillers on physical–chemical properties of polysaccharide-based film intended for food packaging, in: Food Packaging, A.M. Grumezescu, (Ed.), pp. 637–697, Academic Press, Cambridge, Massachusetts, 2017.
29. Draget, K.I., Alginates, in: Handbook of Hydrocolloids, Second Edition, G.O. Phillips, and P.A. Williams, (Eds.), pp. 807–828, Woodhead Publishing, Sawston, Cambridge, 2009.
30. Haug, A., Larsen, B., Smidsrød, O., A study of the constitution of alginic acid by partial acid hydrolysis. Acta Chem. Scand., 20, 183–190, 1966.
31. Anderson, N.S. et al., Carrageenans. Part IV. Variations in the structure and gel properties of κ-carrageenan, and the characterisation of sulphate esters by infrared spectroscopy. J. Chem. Soc. C: Organic, 602–606, 1968.
32. Rode, M.P. et al., Carrageenan hydrogel as a scaffold for skin-derived multipotent stromal cells delivery. J. Biomater. Appl, 33, 3, 422–434, 2018.
33. Foley, P.M., Beach, E.S., Zimmerman, J.B., Algae as a source of renewable chemicals: Opportunities and challenges. Green Chem., 13, 6, 1399–1405, 2011.
34. Chauhan, P.S. and Saxena, A., Bacterial carrageenases: An overview of production and biotechnological applications. 3 Biotech, 6, 2, 146, 2016.
35. Kadajji, V.G. and Betageri, G.V., Water Soluble Polymers for Pharmaceutical Applications. Polymers, 3, 4, 1972–2009, 2011.
36. Loth, F., Industrial gums: Polysaccharides and their derivatives. 3rd edition, Edited by Whistler, Roy L. and BeMiller, James N., Academic Press, Inc., San Diego/New York/Boston/London/ Sidney/Tokyo/Toronto 1993.642P. Acta Polym., 44, 3, 172–172, 1993.
37. Usov, A.I., Chapter 4—Polysaccharides of the red algae, in: Advances in Carbohydrate Chemistry and Biochemistry, D. Horton, (Ed.), pp. 115–217, Academic Press, Cambridge, Massachusetts, 2011.
38. Sudha, P.N. et al., Chapter Seven—Marine Carbohydrates of Wastewater Treatment, in: Advances in Food and Nutrition Research, S.-K. Kim, (Ed.), pp. 103–143, Academic Press, Cambridge, Massachusetts, 2014.
39. Miller, I.J., Evaluation of the Structure of the Polysaccharide from Myriogramme denticulata as Determined by 13C NMR Spectroscopy, in: Botanica Marina, p. 253, 2001.
40. Rees, D.A. and Conway, E., The structure and biosynthesis of porphyran: A comparison of some samples. Biochem. J., 84, 2, 411–416, 1962.
41. Baweja, P. et al., Biology of Seaweeds, in: Seaweed in Health and Disease Prevention, J. Fleurence, and I. Levine, (Eds.), pp. 41–106, Academic Press, San Diego, 2016.
42. Vo, T.-S. and Kim, S.-K., Marine-Derived Polysaccharides for Regulation of Allergic Responses, in: Advances in Food and Nutrition Research, S.-K. Kim, (Ed.), pp. 1–13, Academic Press, Cambridge, Massachusetts, 2014.
43. Zhang, Q. et al., Chemical characteristics of a polysaccharide from Porphyra capensis (Rhodophyta). Carbohydr. Res., 340, 15, 2447–2450, 2005.
44. Vo, T.-S. and Kim, S.-K., Fucoidans as a natural bioactive ingredient for functional foods. J. Funct. Foods, 5, 1, 16–27, 2013.
45. Skriptsova, A., Fucoidans of brown algae: Biosynthesis, localization, and physiological role in Thallus. Russ. J. Mar. Biol., 41, 3, 145–156, 2015.
46. Holtkamp, A.D. et al., Fucoidans and fucoidanases—Focus on techniques for molecular structure elucidation and modification of marine polysaccharides. Appl. Microbiol. Biotechnol., 82, 1, 1, 2009.
47. Senni, K. et al., Marine polysaccharides: A source of bioactive molecules for cell therapy and tissue engineering. Mar. Drugs, 9, 9, 1664–1681, 2011.
48. Hahn, T. et al., Novel procedures for the extraction of fucoidan from brown algae. Process Biochem., 47, 12, 1691–1698, 2012.
49. Lahaye, M. and Robic, A., Structure and functional properties of Ulvan, a polysaccharide from green seaweeds. Biomacromolecules, 8, 6, 1765–1774, 2007.
50. Jain, R.M. et al., Physicochemical characterization of biosurfactant and its potential to remove oil from soil and cotton cloth. Carbohydr. Polym., 89, 4, 1110–1116, 2012.
51. Shrivastava, A., Polymerization, in: Introduction to Plastics Engineering, A. Shrivastava, (Ed.), pp. 17–48, William Andrew Publishing, New York, 2018.
52. Mishra, A. and Jha, B., Microbial Exopolysaccharides, in: The Prokaryotes: Applied Bacteriology and Biotechnology, E. Rosenberg, (Ed.), pp. 179–192, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.
53. Xiao, R. and Zheng, Y., Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol. Adv., 34, 7, 1225–1244, 2016.
54. Parker, C.L., The Effects of Environmental Stressors on Biofilm Formation of Chlorella Vulgaris, Appalachian State University, Boone, NC, 2013.
55. Delattre, C. et al., Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol. Adv., 34, 7, 1159–1179, 2016.
56. Pierre, G. et al., What Is in Store for EPS Microalgae in the Next Decade? Molecules, 24, 23, 4296, 2019.
57. Arad, S.M. and Levy-Ontman, O., Red microalgal cell-wall polysaccharides: Biotechnological aspects. Curr. Opin. Biotechnol., 21, 3, 358–364, 2010.
58. Lewin, R.A., Extracellular Polysaccharides Of Green Algae. Can. J. Microbiol., 2, 7, 665–672, 1956.
59. Moore, B.G. and Tischer, R.G., Extracellular Polysaccharides of Algae: Effects on Life-Support Systems. Science, 145, 3632, 586, 1964.
60. Paulsen, B.S. et al., Extracellular polysaccharides from Ankistrodesmus densus (Chlorophyceae). J. Phycol., 34, 4, 638–641, 1998.