Скачать книгу

SB, Kerr AR, Dawes C, Pedersen AM: World Workshop on Oral Medicine VI: a systematic review of medication-induced salivary gland dysfunction: prevalence, diagnosis, and treatment. Clin Oral Investig 2015;19:1563–1580.

      Dr. Charlotte Simark Mattsson

      Department of Cariology, Institute of Odontology

      Sahlgrenska Academy at University of Gothenburg

      Box 450, SE–405 30 Gothenburg (Sweden)

      E-Mail [email protected]

      Zohoori FV, Duckworth RM (eds): The Impact of Nutrition and Diet on Oral Health.

      Monogr Oral Sci. Basel, Karger, 2020, vol 28, pp 22–31 (DOI: 10.1159/000455369)

      ______________________

      Frank Lippert

      Department of Cariology, Operative Dentistry and Dental Public Health, Oral Health Research Institute, Indiana University School of Dentistry, Indianapolis, IN, USA

      ______________________

      Abstract

      The foods in the diet contain a wide range of organic and inorganic compounds. Considering these from an elemental perspective, 5 so-called macroelements, calcium, potassium, sodium, phosphorus and chlorine, are contained in comparatively large quantities in foods compared to all other elements. This chapter attempts to review the importance of these dietary macroelements on oral health, and in particular their role in tooth loss, dental caries, erosive tooth wear and periodontal disease. Calcium and phosphate make up the bulk of the mineralized human tissues. Adequate intake of both is therefore of crucial importance in maintaining the health, function and retention of teeth and bones. Supplementation of the diet with calcium has also been shown to aid in maintaining and improving oral health. Several attempts have been made to lessen the erosive potential of beverages through calcium supplementation. Adequate calcium intake is also crucial for maintaining periodontal health. In many areas, however, the evidence is still emerging or controversial. Phosphate supplementation of the diet was once thought to decrease caries incidence, although studies in children were not successful. Furthermore, little attention has been paid to the other macroelements, highlighting the need for more well-controlled and comprehensive studies.

      © 2020 S. Karger AG, Basel

      Introduction

      As the terms “minerals” and “elements” are often used interchangeably, a few clarifying definitions will be presented first: Minerals are naturally occurring, solid, inorganic, crystalline substances which can contain a wide range of elements, although some minerals contain only one element (e.g., gold, diamond [carbon]). Elements, on the other hand, are substances that cannot be chemically interconverted or broken down into simpler substances, with each element being distinguished by its atomic number (i.e., the number of protons in the nuclei of its atoms). In biological tissues or foods, minerals are defined as the inorganic residue after ashing, a process by which water and organic matter are removed through prolonged, extensive heating in the presence of oxidizing agents, such as oxygen. Depending on the abundance of individual elements within the ash, elements can be divided into macro-, micro- or (ultra-) trace elements. Depending on their physiological importance, these elements can be also, or further, divided into essential, non-essential and toxic elements, although Paracelsus’ pearl (gemstone, not a mineral) of wisdom – “All things are poisons, for there is nothing without poisonous qualities. It is only the dose which makes a thing poison.” – must be borne in mind. These classifications are arguably somewhat arbitrary and perhaps highlight that our knowledge of the physiological importance of all naturally occurring elements is still evolving.

      All macroelements (Ca, K, Na, P, Cl), the topic of this chapter, are essential as they fulfil a variety of biological functions. However, these elements have physiological importance only in their ionic state and are consumed primarily in the form of salts. Virtually all potassium and sodium salts are soluble, whereas most physiologically relevant calcium salts are sparingly, poorly soluble or insoluble. Although the solubility of salts is determined by the anion(s), of physiological importance are primarily cations. Table 1 summarizes the most common sources of macroelements in the diet.

      Despite the macroelements being present in a wide range of foods and in sufficient amounts, the consumption of (arguably questionable) dietary supplements to boost the nutritional value of one’s diet has become increasingly popular. From a nutritional perspective, dietary supplements can be differentiated from foods, although they are considered a category of food. These supplements often contain high doses of individual (macro-) elements as a bioavailable salt in tablet form, although concentrated solutions have also become commercially available recently. Matrix effects or potential incompatibilities with other ions or compounds (e.g., oxalate contained in rhubarb or other plant leaves reduces the bioavailability of calcium) have been mitigated. It goes without saying that tablets have exclusively systemic effects, whereas solutions have topical as well as systemic effects. While the diet itself has been implicated as a risk factor for a range of diseases and conditions (e.g. see Chapter 7 for sugar and dental caries and Chapter 9 for fruit juices/acidic drinks and dental erosion), the effect of dietary supplements, although somewhat unintentionally and indirectly related to their nutritional benefits (e.g., effects of calcium supplementation on tooth loss and periodontal disease – see below), has also been the subject of oral health research.

      Oral Health Relevance

      The role of macroelements in the following topics relating to oral health will be discussed in more detail: tooth loss, dental caries and erosive tooth wear, periodontal disease, and saliva.

      Tooth Loss

      Tooth loss can occur due

Скачать книгу