Скачать книгу

upper D Superscript 2 Baseline EndFraction StartFraction 3 Over upper C Subscript normal upper T Baseline EndFraction equals exp left-parenthesis StartFraction minus upper Delta upper H Subscript normal upper D Baseline plus upper T upper Delta upper S Subscript normal upper D Baseline Over italic upper R upper T EndFraction right-parenthesis"/>

      where ΔHD and ΔSD are the van't Hoff enthalpy and entropy of duplex formation in the 1 : 1 : 1 mixture of the three strands, respectively, and αD is the molar fraction of the coiled strands in the structured duplex form. For this case, the maximum temperature should take place at αD = 0.50 [18], and therefore, the van't Hoff equation can be written as

      (3.24)upper T Subscript normal upper D Superscript negative 1 Baseline equals StartFraction upper R Over upper Delta upper H Subscript normal upper D Baseline EndFraction ln StartFraction upper C Subscript normal upper T Baseline Over 6 EndFraction plus StartFraction upper Delta upper S Subscript normal upper D Baseline Over upper Delta upper H Subscript normal upper D Baseline EndFraction

      3.5.3 Thermodynamic Analysis for the Tetraplex

Schematic illustration of the (a) The unfolding process for the intermolecular tetraplex. (b) Unfolding and folding behaviors for intermolecular tetraplex monitored by UV absorption. n normal upper A right harpoon over left harpoon normal upper A Subscript n

      The general expression for the equilibrium constant, K, in terms of α and n is

      (3.25)upper K equals StartFraction left-bracket normal upper A Subscript n Baseline right-bracket Over left-bracket normal upper A right-bracket Superscript n Baseline EndFraction equals StartFraction alpha left-parenthesis upper C Subscript normal upper T Baseline slash n right-parenthesis Over left-bracket left-parenthesis 1 minus alpha right-parenthesis upper C Subscript normal upper T Baseline right-bracket Superscript n Baseline EndFraction equals StartFraction alpha Over italic n upper C Subscript normal upper T Superscript n minus 1 Baseline left-parenthesis 1 minus alpha right-parenthesis Superscript n Baseline EndFraction

      Note that this expression for the equilibrium constant for an association reaction among same sequences is not identical to the corresponding expression for different sequences. If one defines the melting temperature, Tm, as the temperature at which α = 0.5, the general expression for K shown above reduces to

Schematic illustration of the (a–c) Typical examples for intermolecular and intramolecular tetraplexes described equation of nA ⇌ An. n indicates the number of strands.

      1 Study the interactions to determine the stability of canonical nucleic acids.

      Stability of canonical nucleic acids depends on the sequences because hydrogen bonding, base stacking, and conformational entropy affect mainly stability of canonical nucleic acids.

      1 Understand the difference in factors determining stability of canonical and non-canonical nucleic acids.

      1 Analyze the stability for canonical and non-canonical nucleic acids.

      The thermodynamic parameters for both canonical and non-canonical structures can be estimated using thermal melting curves for the nucleic acid structures. The different equations for melting treatments are required because the unfolding process for the nucleic acids depends on their structures.

      1 1 (a) Breslauer, K.J., Frank, R., Blocker, H., and Marky, L.A. (1986). Proc. Natl. Acad. Sci. U. S. A. 83: 3746–3750.(b) Auffinger, P. and Westhof, E. (2002). Biophys. Chem. 95: 203–210.(c) Auffinger, P. and Westhof, E. (2001). Angew. Chem. Int. Ed. Engl. 40: 4648–4650.(d) Anderson, C.F. and Record, M.T. Jr. (1995). Annu. Rev. Phys. Chem. 46: 657–700.

      2 2 (a) Feig, M. and Pettitt, B.M. (1999). Biophys. J. 77: 1769–1781.(b) Feig, M. and Pettitt, B.M. (1998). Biopolymers 48: 199–209.(c) Spink, C.H. and Chaires, J.B. (1999). Biochemistry 38: 496–508.(d) Nordstrom, L.J., Clark, C.A., Andersen, B. et al. (2006). Biochemistry 45: 9604–9614.(e) Record, M.T. Jr. Anderson, C.F., and Lohman, T.M. (1978).

Скачать книгу