ТОП просматриваемых книг сайта:
Конструкции и монтаж фотоэлектрических модулей. Юрий Степанович Почанин
Читать онлайн.Название Конструкции и монтаж фотоэлектрических модулей
Год выпуска 2021
isbn
Автор произведения Юрий Степанович Почанин
Жанр Прочая образовательная литература
Издательство ЛитРес: Самиздат
Двухкаскадные солнечные элементы различных типов были созданы в начале 80-х годов XX века. Каскадные солнечные элементы, применяемые в настоящее время в космических аппаратах, содержат третий каскад с германиевым p-n-переходом. В это же время начались исследования возможности создания четырех-, пяти-, а возможно и еще более многокаскадных структур, которые позволили бы реализовать высокие значения КПД в солнечных элементах. В таблице 2.1. представлены значения КПД каскадных СЭ. Стоит отметить, что столь высокие показатели КПД позволяют уменьшить стоимость получаемой солнечной энергии почти в 2 раза в сравнении с солнечными батареями на основе кристаллического кремния.
Таблица 2.1. Показатели КПД в % для переходов каскадных СЭ
Теоретическое значение КПД
Ожидаемое значение КПД
Реализованное значение КПД
1 p-n-переход
30
27
25,1
2 p-n-перехода
36
33
30,3
3 p-n-перехода
42
38
31,0
4 p-n-перехода
47
42
–
5 p-n-переходов
49
44
–
Весьма перспективны каскадные батареи на основе аморфного гидрогенизированного кремния (aSi:H) и сплавов на его основе, (кремний-германий, SiGe), состоящие из трех элементов с различной шириной запрещенной зоны. Аморфный кремний содержит водород, который блокирует оборванные связи кремния, поэтому он является гидрогенизированной формой кремния. Гидрогенизированный аморфный кремний является прямозонным полупроводником с шириной запрещенной зоны 1,8 эВ и высоким коэффициентом оптического поглощения. Это означает, что пленка толщиной всего несколько микрон поглотит большую часть солнечного излучения. При легировании пленки аморфного кремния германием ширина запрещенной зоны уменьшается, а при добавлении углерода – увеличивается. Это позволяет создавать солнечные элементы с двумя или тремя гетеропереходами, перекрывающими практически весь солнечный спектр. Верхний слой, поглощающий коротковолновую область солнечного спектра, сформирован из сплава на основе a-Si:H с шириной оптической щели 1,8 эВ. Для серединного элемента в качестве слоя i-типа использован сплав a-SiGe:H с содержанием германия ~10–15%. Ширина оптической щели данного слоя (1,6 эВ) идеальна для поглощения зеленой области солнечного спектра. Нижняя часть СЭ поглощает длинноволновую часть спектра, для этого используется i-слой a-SiGe:H с концентрацией германия 40–50%. Непоглощенный свет отражается от заднего контакта на основе Ag/ZnO/ Все три элемента каскадной СБ связаны между собой сильнолегированными слоями, образующими туннельные переходы между соседними элементами. Слои, формирующие туннельные переходы, должны быть предельно тонкими (в нанометровом диапазоне) для минимизации поглощения света, в то время как фотоактивньге