Скачать книгу

Vessel dimensions.Table 19.2 Optimum power summary.Table 19.3 Heat transfer results.Table 19.4 Capital costs.Table 19.5 Problem 2 optimum power requirements.Table 19.6 Problem 2 heat transfer results.Table 19.7 Problem 2 Capex summary.Table 19.8 Optimum power at 75 OTR, problem 3.Table 19.9 Problem 3 heat transfer results.Table 19.10 Problem 3 alt 1 heat transfer results.Table 19.11 Capex based on chilled water, problem 3.Table 19.12 Capex based on cooling tower water, problem 3.

      16 Chapter 20Table 20.1 Supplier Audit Checklist

      List of Illustrations

      1 Chapter 2Figure 2.1 Agitator design flow chart.

      2 Chapter 3Figure 3.1 Agitated tank.Figure 3.2 Agitated tank sketch.Figure 3.3 Swept diameter.Figure 3.4 Typical power number curve.Figure 3.5 Typical pumping number curve.Figure 3.6 Dimensionless blend time.Figure 3.7 Gassing factors.Figure 3.8 shear stress curve.Figure 3.9 viscosity curve.

      3 Chapter 4Figure 4.1 Flooding determination by using kla.Figure 4.2 Impeller flooding by power draw.Figure 4.3 Visual flooding.Figure 4.4 Available motor power curve using VFD.

      4 Chapter 5Figure 5.1 Axial flow pattern.Figure 5.2 Solidity.Figure 5.3 Radial flow pattern.Figure 5.4 Mixed flow pattern.Figure 5.5 (a) Proquip HFI.(b) Chemineer XE‐3.Figure 5.6 (a) Fusion Fluid PF3.(b) Lightnin A510E22/A‐310.(c) Chemi...Figure 5.7 Chemineer SC‐3.Figure 5.8 (a) Chemineer Maxflo W.(b) Chemineer Maxflo Y up‐pumping....Figure 5.9 Axial flow gassing factors at D/T ~ 0.4.Figure 5.10 Straight blade turbine by Chemineer.Figure 5.11 Rushton turbine.Figure 5.12 Rushton gas cavities.Figure 5.13 Gas pocket photo.Figure 5.14 Rushton turbine gassing factors.Figure 5.15 Chemineer CD‐6 impeller.Figure 5.16 CD‐6 gas pockets.Figure 5.17 CD‐6 gassing factors.Figure 5.18 (a) ICI Patent drawing.(b) SCABA 6SRGT.(c) Lightnin R‐13...Figure 5.19 BT‐6 impeller.Figure 5.20 BT‐6 no gas pockets.Figure 5.21 BT‐6 gassing factors.Figure 5.22 BT‐6 vs. Phasejet gassing factors.Figure 5.23 BT‐6 gas dispersion data.Figure 5.24 Blade struts.Figure 5.25 Pitched‐blade turbine.Figure 5.26 (a) Ekato Intermig patent drawing. (b) ProQuip Doubly Pitched im...Figure 5.27 Chemineer JT‐2.Figure 5.28 Torus zones.Figure 5.29 Ekato Combijet patent drawing.

      5 Chapter 6Figure 6.1 Multiple radial flow pattern.Figure 6.2 Axial–radial flow pattern.Figure 6.3 Gas flow profile.Figure 6.4 Power draw profile.Figure 6.5 kla profile.Figure 6.6 Example graphic comparison of power draw.Figure 6.7 Example graphic comparison of kla.Figure 6.8 Ring sparger.Figure 6.9 Pie‐plate sparger.Figure 6.10 Fine bubble diffusers.

      6 Chapter 7Figure 7.1 Power optimization curve.Figure 7.2 Comparing correlations.Figure 7.3 Dynamic kla method.

      7 Chapter 8Figure 8.1 Optimum power.

      8 Chapter 9Figure 9.1 OTR profile graphed.Figure 9.2 Total power graphically.

      9 Chapter 10Figure 10.1 (a and b) Helical coil plus simple jacket, plan, and elevation v...Figure 10.2 (a and b) Vertical tube bundles plus dimple jacket, plan, and el...Figure 10.3 (a and b) Small helical coils plus half‐pipe jacket, plan, and e...Figure 10.4 (a and b) Plate coils used as baffles, plan, and elevation views...Figure 10.5 Dimple jacket cross section.Figure 10.6 Effect of baffle number on Power Draw.

      10 Chapter 12Figure 12.1 Cavern visualization, permission of Wiley Interscience.Figure 12.2 Cavern segregation, permission of Wiley Interscience.Figure 12.3 Xanthan Gum installations.Figure 12.4 (a–e) Low D/T results.Figure 12.5 (a–e) Large D/T results.Figure 12.6 Hypothetical Xanthan Gum production curve.

      11 Chapter 13Figure 13.1 Effect of palm oil on xanthan kla.

      12 Chapter 14Figure 14.1 BT‐6 grid.Figure 14.2 Tank grid.Figure 14.3 Vector velocity plot.Figure 14.4 Raster velocity plot.Figure 14.5 Cavern raster plot.Figure 14.6 Cavern surface plot.Figure 14.7 (a–d) blending progress at 0, 4, 10, and 20 s.Figure 14.8 Coil layout.Figure 14.9 Velocities around coils.Figure 14.10 Volume fraction, etc.Figure 14.11 DO distribution.

      13 Chapter 15Figure 15.1 Agitator with seal.Figure 15.2 Shaft entry position.Figure 15.3 Radial lip seal.Figure 15.4 Axial lip seal.Figure 15.5 Compression packing.Figure 15.6 (a) Cartridge single mechanical seal with bearing.(b) single...Figure 15.7 Dry‐running contacting single seal.Figure 15.8 Fully split single mechanical seal.Figure 15.9 Double mechanical seal.Figure 15.10 Gas lubricated seal.Figure 15.11 Pressure gradient.Figure 15.12 Gas control panel.Figure 15.13 Debris catcher.Figure 15.14 Magnetic drive.Figure 15.15 API plan 32.Figure 15.16 API Plan 53A.Figure 15.17 (a) API Plan 74.(b) API Plan 74 gas panel.

      14 Chapter 16Figure 16.1 Direct nozzle mount unit.Figure 16.2 Agitator/vessel FEA.Figure 16.3 Mounting nozzle details.Figure 16.4 Right‐angle mount with auxiliary motor support.Figure 16.5 Vertical motor mount.Figure 16.6 Auxiliary stuffing box or lip seal.Figure 16.7 Auxiliary mechanical seal sidewall beams.Figure 16.8 Auxiliary mechanical seal beams to building.Figure 16.9 Bellows connector, beams to sidewall.Figure 16.10 Bellows connector, beams to building.Figure 16.11 Direct nozzle mount bottom entering unit.Figure 16.12 Floor mount with auxiliary packing.Figure 16.13 Floor mount with auxiliary mechanical seal.Figure 16.14 Floor mount with bellows connector.

      15 Chapter 17Figure 17.1 Cantilevered load diagram.Figure 17.2 Steady bearing load diagram.Figure 17.3 Critical speed model.Figure 17.4 Steady bearing dynamic analysis.Figure 17.5 Steady bearing dynamic analysis

Скачать книгу