Скачать книгу

by different basal mediums revealed that aloe emodin accumulation is much higher on B5 medium than on MS medium (Lee et al. 2011). Aloesin, aloin, and aloe emodin are considered as the most important secondary products due to its medicinal and cosmetic properties. It was observed that aloesin production was higher in MS medium with 2,4-D and BA supplementation, while total aloin concentration was higher in calli induced by leaves. Aloe emodin production was greater than aloin production in the calli of both basal and fresh leaves compared to the entire leaves. Probably, this high aloe emodin production found was due to the aloin oxidation (Acurero 2008).

      1 Abd-Alla, H.I., Abu-Gabal, N.S., Hassan, A.Z. et al. (2012). Antiviral activity of Aloe hijazensis against some haemagglutinating virus's infection and its phytoconstituents. Arch. Pharm. Res. 35: 1347–1354.

      2 Abd-Alla, H.I., Shaaban, M., Shaaban, K.A. et al. (2008). New bioactive compounds from Aloe hijazensis. Nat. Prod. Res. 23: 1035–1049.

      3 Abdi, G., Hedayat, M., and Modarresi, M. (2013). In vitro micropropagation of Aloe vera – impacts of plant growth regulators, media and type of explants. J. Biol. Environ. Sci. 7: 19–24.

      4 Abdissa, N., Gohlke, S., Frese, M., and Sewald, N. (2017). Cytotoxic compounds from Aloe megalacantha. Molecules 2017 (22): 1136.

      5 Abdissa, N., Induli, M., Fitzpatrick, P. et al. (2014). Cytotoxic quinones from the roots of Aloe dawei. Molecules 19: 3264–3273.

      6 Acurero, Á.M. (2008). Aloesin, aloin and aloe-emodin production in Aloe vera L. calli. Ciencia 16: 389–395.

      7 Amoo, S.O., Aremu, A.O., and Staden, J.V. (2014). Unraveling the medicinal potential of South African Aloe species. J. Ethnopharmacol. 153: 19–41.

      8 Badar, Z., Khan, S., Saifullah, A.K. et al. (2013). In vitro and biotransformational studies of Aloe barbadensis Mill. Pak. J. Bot. 46: 679–685.

      9 Bbosa, G.S., Kyegombe, D.B., Lubega, A. et al. (2013). Anti-Plasmodium falciparum activity of Aloe dawei and Justicia betonica. Afr. J. Pharm. Pharmacol. 7: 2258–2263.

      10 Bisrat, D., Dagne, E., van Wyk, B.-E., and Viljoen, A.M. (2000). Chromones and anthrones from Aloe marlothii and Aloe rupestris. Phytochemistry 55: 949–952.

      11 Blitzke, T., Porzel, A., Masaoud, M., and Schmidt, J. (2000). A chlorinated amide and piperidine alkaloids from Aloe sabaea. Phytochemistry 55: 979–982.

      12 Botes, L., van der Westhuizen, F.H., and Loots, D.T. (2008). Phytochemical contents and antioxidant capacities of two Aloe greatheadii var. davyana extracts. Molecules 13: 2169–2180.

      13 Boudreau, M.D. and Beland, F.A. (2006). An evaluation of the biological and toxicological properties of Aloe barbadensis (Miller), Aloe vera. J. Environ. Sci. Health C Carcinog. Ecotoxicol. Rev. 24: 103–154.

      14 Choche, T., Shende, S., and Kadu, P. (2014). Extraction and identification of bioactive components from Aloe barbadensis Miller. Res. Rev: J. Pharmacogn. Phytochem. 2: 14–23.

      15 Choi, S. and Chung, M.H. (2003). A review on the relationship between Aloe vera components and their biologic effects. Semin. Integr. Med. 1: 53–62.

      16 Confalone, P.N., Huie, E.M., and Patel, N.G. (1983). The isolation, structure determination and synthesis of pluridone, a novel insecticide from Aloe pluridens. Tetrahedron Lett. 24: 5563–5566.

      17 Conner, J.M., Gray, A.I., Reynolds, T., and Waterman, P.G. (1987). Anthraquinone, anthrone and phenylpyrone components of Aloe nyeriensis var. kedongensis leaf exudate. Phytochemistry 26: 2995–2997.

      18 Conner, J.M., Gray, A.I., Reynolds, T., and Waterman, P.G. (1989). Anthracene and chromone derivatives in the exudate of Aloe rabaiensis. Phytochemistry 28: 3551–3353.

      19 Conner, J.M., Gray, A.I., Reynolds, T., and Waterman, P.G. (1990a). Anthrone and chrome components of Aloe cremnohila and Aloe jacksanii leaf exudates. Phytochemistry 29: 941–945.

      20 Conner, J.M., Gray, A.I., Waterman, P.G., and Kioy, D. (1990b). Novel anthrone anthraquinone dimers from Aloe elgonica. J. Nat. Prod. 53: 1362–1364.

      21 Crosswhite, F.S. and Crosswhite, C.D. (1984). Aloe vera, plant symbolism and the threshing floor. Desert Plants 6: 43–50.

      22 Dagne, E. and Alemu, M. (1991). Constituents of the leaves of four Aloe species from Ethiopia. Bull. Chem. Soc. Ethiop. 5: 87–91.

      23 Dagne, E., Bisrat, D., Codina, C., and Bastida, J. (1998b). A C,O-diglucosylated oxanthrone from Aloe littoralis. Phytochemistry 48: 903–905.

      24 Dagne, E., Bisrat, D., van Wyk, B.-E., and Viljoen, A.J. (1998a). 10-Hydroxyaloin B 6′-O-acetate, an oxanthrone from Aloe claviflora. J. Nat. Prod. 61: 256–257.

      25 Dagne, E., Bisrat, D., van Wyk, B.-E. et al. (1997). Anthrones from Aloe microstigma. Phytochemistry 44: 1271–1274.

      26 Dagne, E., Bisrata, D., Viljoenb, A., and van Wyk, B.-E. (2000). Chemistry of Aloe species. Curr. Org. Chem. 4: 1055–1078.

      27 Dagne, E., Casser, I., and Steglich, W. (1992). Aloechrysone, a dihydroanthracenone from Aloe berhana. Phytochemistry 31: 1791–1793.

      28 Dagne, E., van Wyk, B.-E., Stephenson, D., and Steglich, W. (1996). Three oxanthrones form Aloe littoralis. Phytochemistry 42: 1683–1687.

      29 Dagne, E., Yenesew, A., Asmellash, S. et al. (1991). Anthraquinones, pre-anthraquinones and isoeleutherol in the roots of Aloe species. Phytochemistry 35: 401–406.

      30 Dagne, E., Yenesew, A., Asmellash, S. et al. (1994). Anthraquinones, pre-anthraquinones and isoeleutherol in the roots of Aloe species. Phytochemistry 35: 401–406.

      31 Deressa, T., Mekonnen, Y., and Animut, A. (2010). In vivo antimalarial activities of Clerodendrum myricoides, Dodoanea angustifolia and Aloe debrana against Plasmodium berghei. Ethiop. J. Health Dev. 24: 25–29.

      32 Dring, J.V., Nash, R.J., Roberts, M.F., and Reynolds, T. (1984). Hemlock alkaloids in aloes. Occurrence and distribution of γ-coniceine. Planta Med. 50: 442–443.

      33 Farah, M.H., Andersson, R., and Samuelsson, G. (1992). Microdontin A and B: two new aloin derivatives from Aloe microdonta. Planta Med. 58: 88–93.

      34 Gomes, A., Neuwirth, O., Freitas, M. et al. (2009). Synthesis and antioxidant properties of new chromone derivatives. Bioorg. Med. Chem. 17: 7218–7226.

      35 Grindlay, D. and Reynolds, T. (1986). The Aloe vera phenomenon: a review of the properties and modern uses of the leaf parenchyma gel. J. Ethnopharmacol. 16: 117–1151.

      36 Groom, Q.J. and Reynolds, T. (1987). Barbaloin in Aloe species. Planta Med. 53: 345–348.

      37 Hamman, J.H. (2008). Composition and applications of Aloe vera leaf gel. Molecules 13: 1599–1616.

      38 Hay, J.E. and Haynes, L.J.J. (1956). The aloins. Part 1. The structure of barbaloin. J. Chem. Soc. 1956: 3141–1347.

      39 Haynes, L.J., Henderson, J.I., and Tyler, J.M.J. (1960). C-Glycosyl compounds. Part IV. The structure of homonataloin and the synthesis of nataloe-emodin. J. Chem. Soc. 1960: 4879–4885.

      40 Haynes, L.J., Hodlsworth, D.K., and Russell, R. (1970). C-Glycosyl compounds. Part VI. Aloesin, a C-glucosylchromone from Aloe sp. J. Chem. Soc. C 1970: 2581–2586.

      41 Holdsworth, D.K. (1972). Chromones in Aloe species. II. aloesone. Planta Med. 22: 54–58.

      42 Holzapfel, C.W., Wessels, P.L., van Wyk, B.-E. et al. (1997). Chromone and aloin derivatives from Aloe broomii, A. Africana and A. speciosa. Phytochemistry 45: 97–102.

      43 Horhammer, L., Wagner, H., and Bittner, G.

Скачать книгу