Скачать книгу

was, we got to the seventh race, at Pau in the South of France, a street track. Johnny and I walked the track. ‘Christ,’ I said, ‘this is a bumpy track. I think we need to go soft on the springs; get a bit more compliance in the suspension. What do you think: fit the softer springs now, or wait until after the first session?’

      Johnny had faith in me. ‘Straightaway,’ he said.

      So I went and had a rummage in the truck, found some soft springs and fitted them, taking it down 200lbs/in each end.

      The benefit of doing this, of course, is that the car will absorb the bumps more effectively. With stiff springs on a bumpy track, the car tends to leap from bump to bump, meaning the load on the tyres at the contact patch changes too much, causing the car to continually grip and slide between crest and hollow. If you’ve ever driven an overly stiff road car, you’ll know what I mean. You go over a pothole, get shaken about, the car skitters. However, the extra compliance in the softer springs means that the car will change its attitude more, pitching under braking, rolling more in the corners and sinking more as the downforce comes on with speed. This extra movement of the car upsets the aerodynamics with the downforce, and particularly the distribution of downforce between the front and rear axles, changing more than with a stiffly sprung car. It is all about finding the best compromise for a given car at a given circuit.

      Johnny practised with the new springs, felt the suspension was still too stiff and so, with Ralph and Peter oblivious to what I was doing, I went and had a second rummage, found even softer springs and fitted those. And then, just in case Ralph and Peter cottoned on and decided to swap springs on their own cars, I hid the remaining soft ones.

      With hindsight, that was a very naughty thing to do. Led astray by the lure of competition, I forgot I was employed by the team, not the driver. But Johnny went on to take pole and win the race, something I will guiltily admit was a hugely satisfying result, given the reflected glow for yours truly, and one that perhaps went some way to repaying Johnny’s trust in adopting me.

      Towards the end of the year we had three consecutive races in Italy; in Mugello, northern Italy, then Enna in Sicily and finally back up to Misano, which is on the Adriatic Coast. Flying wasn’t so common in those days; we, the mechanics and I, just drove from race to race, and for three weeks we enjoyed a fabulous tour of Italy. Prior to that I’d never travelled further than Scotland; now here I was taking in the Mediterranean sights. We stayed in Rome one night; we took the ferry across to Sicily. It was fabulous.

      The Enna race was stinking hot. We all ate watermelon – and all went down with the squits. The theory was that it had been grown in sewage. All I knew was that the whole team was in an awful state for race day, particularly those of us who were working on Johnny’s car – to the point that we managed to get him started and then ran off to sit on the loo for the whole race. If he’d had a problem, he would have had to sort it out himself, because there was nobody in the pits any more!

      But apart from that, it was a fabulous season. What’s more, I was learning on the job and proving myself as a race engineer, as the battle between Johnny and his teammate, Corrado, was hard-fought and went right to the wire. And though Corrado won, Johnny’s second place in the championship earned him a spot in Formula One for the following season.

      With all that going on, I was also having fun at the drawing board during the week.

      My weekday job was on the design side. First, I designed a dry sump for a Chevrolet engine to go in the back of the March sports car, after which I was asked to strengthen the gearbox, which meant spending a week with Hewland in Maidenhead, who made the gearboxes.

      Next I was told to draw the bodywork for the 1983 March Can-Am series car, a new design based on an old March Formula One chassis, with a Chevrolet engine in the back and bodywork designed by Max Sardou.

      Now, Max Sardou was a ‘name’. A French aerodynamicist of some repute, he’d been commissioned by March to come up with the bodywork shape. He was an eccentric character, with a pallid complexion and long black greasy hair. He always wore a trench coat, even in the middle of summer, and he drove a Citroen DS with the wing mirrors folded flat to reduce drag.

      Sardou’s shape for the Can-Am was big and bulbous and apparently designed to ram air into the diffuser. He claimed that the air would flow so fast under the diffuser that it would go sonic and that there would therefore be a sonic boom at the end of the straights! I took one look at it and knew it wouldn’t work. You can’t ram air until you’re supersonic. At Southampton, one of our lab experiments had been on a ramjet, in which we learnt that they do not really work below about mach three.

      I went to see Dave Reeves, the production manager at March, scratching my new beard as I outlined the reasons why I didn’t think the design would work.

      He looked at me as though I were mad. This was Max Sardou we were talking about. Along with Lotus, Sardou was one of the pioneers of ground effect and fresh from designing an eye-catching underbody for the Lola T600 the previous year.

      And I was … well, who was I? Some kid who had worked for Fittipaldi.

      So Reeves told me to button it and get on with the draughting, a job that involved taking Sardou’s quarter-scale wind tunnel model shape and blowing it up to full size, as well as working out how to split the shape into separate pieces of bodywork that could be fitted onto the March Formula One chassis.

      I must have had brain failure, because I got one of the dimensions wrong – 1in out, I was – but the car was so big that the pattern makers didn’t even notice the mistake. What eventually emerged was something so large and ugly it was nicknamed HMS Budweiser (after the team’s sponsor).

      Still, as far as I was concerned it was good experience in how to design bodywork as components, as opposed to aerodynamic shapes. What’s more, it kept me busy until the end of the year, by which time I was wondering, What am I going to be given next?

      Rather than be stuck with another Sardou-style monster, I decided to be proactive and find something useful to do myself. The 82G, a sports car for which I had designed the sump as my first task at March, had competed at Le Mans that summer (June 1982) but not done well (DNF, ‘did not finish’). I spent some time looking over it in the evenings and decided there was a lot wrong with it that could be improved, particularly on the aerodynamic side (it, too, was a Max Sardou design).

      Mindful of Dave Reeves’ dismissal of my opinion on the Can-Am car, I decided to be brave and go straight to the top with my ideas, so I approached Robin Herd, the incredibly brainy boss of March, one day in the factory. ‘What are your plans for the sports car?’ I asked him.

      He frowned and crinkled his eyes. ‘What do you have in mind?’

      I said, ‘I’ve had a bit of a look at it and, um, I don’t know if you know, but I did my final-year project on ground-effect aerodynamics applied to a sports car, and based on my findings from that project, I think I could do something with it.’

      He said, ‘Okay, well, I’ll tell you what. You have a go at it. But I haven’t got any draughtsmen that can help you modify it and there’s no budget for wind tunnel testing.’

      That final caveat was a bit of a drag, no pun intended. It meant I’d have to reshape much of the car by eye. Which is what I did. I changed the rear wing, reshaped the nose and added an extension to the underwing at the front. In addition, I redrew the whole lower surface and diffuser – the ground-effect bit, in other words – before I set about taking weight out of it.

      The nose supports were heavy, but that’s because they were made from aluminium plates. So I redesigned them in a sandwich structure with aluminium honeycomb between very thin, 0.7mm-thick sheets of aluminium, to make it light but stiff. I lost another kilogram by allowing a little more pressure drop through the water pipes, enabling me to reduce the water-pipe diameter, and I redesigned the heavy, complicated steering column, yielding further savings. And finally I worked with the bodywork laminators to get the bodywork weight down.

      In

Скачать книгу