Скачать книгу

p, но и параметры α и β за счет выбора уровней ордеров TakeProfit и StopLoss. То есть можно создавать И-процессы с самыми разными сочетаниями параметров α, β и p.

      2.2. Особенности области применения Мартингейла на бирже

      Как уже было сказано выше, управление капиталом в стратегии Мартингейла происходит путем определения нужной величины S0 на каждом цикле при фиксированных параметрах α, β и p.

      Иногда в литературе по Форексу рассматривается такая стратегия, где величина S0 в И-процессе никогда не меняется, а меняются параметры α и β. Изменение этих параметров происходит по принципу очень похожему на стратегию Мартингейла.

      Но в данной книге такие И-процессы не рассматриваются. Считается, что в конкретном И-процессе параметры α и β строго фиксированы. Переход к другим параметрам α и β означает переход к другому И-процессу.

      Само же изменение величины S0 может происходить любым способом. Например, на Форексе и на фондовой бирже можно увеличить величину S0 за счет собственных средств трейдера, а можно и за счет заемных средств, то есть за счет изменения величины кредитного плеча.

      Вариант с изменением размера кредитного плеча менее удобный. Ведь брокеры редко предоставляют всю необходимую линейку кредитных плеч.

      При использовании стратегии Мартингейла с изменением размера кредитного плеча, трейдер должен формально считать стартовым капиталом сумму своего стартового капитала и, плюс, полный заемный капитал, которым он может воспользоваться.

      Наконец, при применении Мартингейла на Форексе и на фондовой бирже нужно уметь правильно посчитать параметры α и β. Они зависят не только от расстояний между ценой входа в рынок и ценами на уровнях TakeProfit и StopLoss, но и от всех транзакционных издержек. При этом на фондовой бирже к таким издержкам относится и плата за кредитное плечо в короткой позиции.

      2.3. И-процесс для большого числа исходов

      Могут существовать такие И-процессы, в которых могут быть не два исхода, а три и более исходов.

      Например, если игрок в европейскую рулетку каждый раз ставит одновременно на один номер и на другие четыре номера, то имеются уже три исхода. Это два исхода на выигрыш и один исход на проигрыш.

      Первый исход на выигрыш имеет вероятность p1=1/37 и α1=35. Второй исход на выигрыш имеет вероятность p2=4/37 и α2=8. Исход на проигрыш имеет вероятность q=32/37 и β=1.

      Такие И-процессы в книге тоже не рассматриваются по причине их сильно большой сложности.

      Для наиболее любопытных и продвинутых читателей сообщу, что, например, в этом приведенном примере для стратегии Мартингейла для непрерывной серии проигрышей получается не бесконечная одномерная последовательность ставок, а бесконечная двухмерная матрица ставок. В связи с этим возникает вопрос о самой лучшей траектории в этой матрице для выбора пары ставок в непрерывной серии проигрышей.

      3. Терминология

      В книге рассматриваются

Скачать книгу