Скачать книгу

процессов, можно подумать, что жизнь может быть реализована почти любым возможным образом. Как и в случае с генетической информацией, по-видимому, нет никаких фундаментальных ограничений касательно того, как можно использовать энергию – лишь бы она имелась в достаточном количестве. Тем удивительнее, что жизнь на Земле оказывается очень стесненной.

      Есть два неожиданных аспекта использования энергии живыми организмами. Во-первых, клетки получают энергию за счет химических реакций лишь одного типа: окислительно-восстановительных. (Или – редокс-реакций: от англ. reduction – восстановление и oxidation – окисление.) Это просто перенос электронов от донора к акцептору. Когда донор отдает электроны, говорят, что он окисляется. Именно это происходит с такими веществами, как железо, когда они реагируют с кислородом: железо отдает электроны кислороду, окисляясь и превращаясь в ржавчину. Про вещество, которое принимает электроны (в этом случае кислород), говорят, что оно восстанавливается. В ходе дыхания или горения кислород (O2) восстанавливается до воды (H2O), так как каждый атом кислорода принимает два электрона (становится O2-) и два протона, которые компенсируют заряд. Реакция идет, потому что в процессе высвобождается энергия в виде тепла и повышается энтропия. Все химические реакции в конечном счете повышают температуру среды и уменьшают энергию самой системы. Реакция железа или питательных веществ с кислородом служит отличным примером этого правила. В ходе них выделяется большое количество энергии (как если бы они горели в огне). При дыхании часть энергии, выделяющейся в реакции, запасается в форме АТФ, пусть и ненадолго: до тех пор, пока АТФ не распадется снова. Расщепляясь, АТФ отдает в форме тепла оставшуюся энергию, которая заключена в связи АДФ – Фн. По сути, дыхание и горение – это одно и то же, но в пламени все сгорает моментально, а в ходе дыхания – несколько медленней. Эту небольшую задержку мы и называем жизнью.

      Из-за того, что электроны и протоны обычно (но не всегда) объединяются друг с другом, восстановление иногда определяют как перенос атома водорода. Но чтобы разобраться в окислительно-восстановительных процессах, для начала следует сосредоточиться на электронах. Последовательность окислительно-восстановительных реакций сводится к путешествию электрона по цепи связанных друг с другом переносчиков. (Не слишком отличается от течения тока по проводам.) Именно это происходит при дыхании. Электроны от питательных веществ переходят на кислород не сразу (как при горении, когда энергия выделяется вся и сразу), а в несколько стадий, прыгая с одного переносчика на другой, будто с кочки на кочку. Обычно “кочками” служат ионы железа (Fe3+), встроенные в белки дыхательной цепи. Как правило, ион железа входит в состав неорганической кристаллической структуры, которая называется железосерным кластером (рис. 8). С одного кластера электрон перепрыгивает на другой, очень похожий, но с чуть более высоким сродством к электрону (более “жадного”). Когда электрон передается от

Скачать книгу