Скачать книгу

это одна сотая диапазона между самым низким и самым высоким значениями исследуемого параметра. Наименьшему значению соответствует нулевой перцентиль, наибольшему – 100-й перцентиль, медиане – 50-й перцентиль и т. д. Прим. ред.

/9j/4QAYRXhpZgAASUkqAAgAAAAAAAAAAAAAAP/sABFEdWNreQABAAQAAABQAAD/4QMvaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLwA8P3hwYWNrZXQgYmVnaW49Iu+7vyIgaWQ9Ilc1TTBNcENlaGlIenJlU3pOVGN6a2M5ZCI/PiA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJBZG9iZSBYTVAgQ29yZSA1LjYtYzEzOCA3OS4xNTk4MjQsIDIwMTYvMDkvMTQtMDE6MDk6MDEgICAgICAgICI+IDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+IDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiIHhtbG5zOnhtcD0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLyIgeG1sbnM6eG1wTU09Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9tbS8iIHhtbG5zOnN0UmVmPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvc1R5cGUvUmVzb3VyY2VSZWYjIiB4bXA6Q3JlYXRvclRvb2w9IkFkb2JlIFBob3Rvc2hvcCBDQyAyMDE3IChXaW5kb3dzKSIgeG1wTU06SW5zdGFuY2VJRD0ieG1wLmlpZDoxRUIzOEFDRkFBOTExMUU3OTZEMUIwMjk3RDc4MzM5OSIgeG1wTU06RG9jdW1lbnRJRD0ieG1wLmRpZDoxRUIzOEFEMEFBOTExMUU3OTZEMUIwMjk3RDc4MzM5OSI+IDx4bXBNTTpEZXJpdmVkRnJvbSBzdFJlZjppbnN0YW5jZUlEPSJ4bXAuaWlkOjFFQjM4QUNEQUE5MTExRTc5NkQxQjAyOTdENzgzMzk5IiBzdFJlZjpkb2N1bWVudElEPSJ4bXAuZGlkOjFFQjM4QUNFQUE5MTExRTc5NkQxQjAyOTdENzgzMzk5Ii8+IDwvcmRmOkRlc2NyaXB0aW9uPiA8L3JkZjpSREY+IDwveDp4bXBtZXRhPiA8P3hwYWNrZXQgZW5kPSJyIj8+/+4ADkFkb2JlAGTAAAAAAf/bAIQAAgICAgICAgICAgMCAgIDBAMCAgMEBQQEBAQEBQYFBQUFBQUGBgcHCAcHBgkJCgoJCQwMDAwMDAwMDAwMDAwMDAEDAwMFBAUJBgYJDQsJCw0PDg4ODg8PDAwMDAwPDwwMDAwMDA8MDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwM/8AAEQgBPAJxAwERAAIRAQMRAf/EAK0AAQACAgMBAQEAAAAAAAAAAAAHCAYJAwQFAgoBAQEBAQEBAQAAAAAAAAAAAAAAAwIBBAUQAAAGAgIBAgMFBQcBBQIPAAABAgMEBQYHEQgSIRMxIhRB1VaWGDJCIxV2UWEWthc3CXGBUjMlJtM0kdFygpLSUyRUhNSFpYZHEQEAAgECAwcEAgICAwEAAAAAAQIRIQMxURJBYYGhsTITcZEEFPAiwdHhUkJiIzP/2gAMAwEAAhEDEQA/AN/gAAAAAAAACNtpbUxjUePwr3JG58966tI1Fi+OVEY5lnb2szyOPBgxyNJLdWSFq+ZSUpSlSlKSlJmMXvFYzLVazaWNa/3zi+dXeY4pY0V/rXMsEiR7PI8TzGNHhSUVkol+zYsvxpMqI/GUbS0m40+okKSaXPFXoOU3YtmMYmObtqTGvFhmEdstfZxkmJUjGM5jjdLshcprVewb+qTCosmciIU6aK9731voN1pCnWClMse8gvJrz9OeV3omY46u22piPotCKpgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKW93XmXsL1LjsV5FDmOX7Sx6q11sd59TDWKXS0yXWrcyLhMhSWW3WER1mSHlO+Cj8TMQ3+ER3q7PGforXkmNbAx7J+4mqMlyVe79s7B0HZX9DtFqIiDYRayM0/WxsYcqoh/Sx/dffcfYUwSDeUpxThKUlJlLpmJtEzmccf8YUiYmKzwjP8lm+f3GO5fpf/AI8a7Bno82VebD1vZ4jXQ3EG6zAoYK5Fq6TaT5JEOK242+XHyGfgvgz4HbYmtIjnH88HKxi1s8pbFMkLI1UNsnEHK1rKDiufyJ24Q85ATJ4/hnJRHUh02+fiSFEf9hj1WzjTihGM6q+lH7menNxpf+//AMtyL/8AXCP/ANf/AF82/wCnezrQefZHszVtJluXQ6yDkj1hd1lwzTG/9Ap6mt5lWbscpJm6SHCiksiWfJc8De1ebVzPH/ly9YrOITGKMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP4ZmRGZF5GReif7QEK6r31hO2pttRVVfkeJ5hQMpk3uDZdTTKW1isLWbaHjbkIJt1tSi4JbLi0/Dky5E6bsW07e9u1JqmsUYAAAAY5lmIYtnmP2WKZpj1flONW7ZNWVHaR25MZ5JGSk+TbhGXKVESkn8UmRGRkZEY5asWjEuxMxOYYxrXTur9PV8+s1lhFXh0W1eS/aqgNcPS3EEZIVIfWanXfAlGSfNR+JGZJ4GabdaRisYdtebcZeZiOg9L4FmFzn+Gazx/G8yvycKzyCDDQ0+onlebxN8F4sk6r5nCbJPmfqrkwrtVrOYjUm9pjEyl0bZAFbOpX+yNZ/VOb/AObLYR/H9njPrKm77vt6LJiyYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADU3sHKNpZDa2OyMy7F5dqLW1Vuy41hlNRjEeFWwcXo4zcqNU2M2XLivKWqZMTCW7JdUbSG5REnxSnkvFa1pnMzMRnH0emsRGkRmcZW36b5HZZPqCZMs83uNnKrcwyWortlWzrTqL6FXWLsaNYQDZQlBRnW20+KSNREol8LWXCjvsTM1111lPdjE8lrRZIAAAAAAAAAAFbOpX+yNZ/VOb/wCbLYR/H9njPrKm77vt6LJiyYAAAAAAAAAANV3f/v8AwNDQJ+ptTT2LLdFnH8La2R4vMYww8nknHCPlK5i0ny00fogjJxwuPBDnl39/p0ji9Gzs9Ws8Fa/+Pf8A5Fn25FXo3sPkjspuW6UfA9oWr6nHEOuq+WBayHVGakqUfDT6z+X9hZ+PipM9j8jGllN/Y7at8o9zxgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADU9nG8duWttbSU75wjHcX2Dta10+3rK1q6mS9jFRBsJUA8hUqW57j0pZVzijYloVHMn0H48IIleG+7bPujWcY/y9MUjl2ZXM6qZrZZdrS0rre4rsmm64y2+wkstqIsaFCt41NLU3DnNRYRFGZNyMpvzQz/AAyWSvAiTwRejYt1V+k4S3IxP1WVFkwAAAHUsDnlAmnVJjrsyjuHWolqUlg3/E/aJ1SCUokGrjyNJGfHwIJFF8g3F25wLN9RYlmOG6ftH9sZQ3RV9RjV1ePWbcNlpcu0siamwIzZswYzaluGSjPlSEkRmoh5rbm5WYicarRSkxMxnRl1ztTshle19rYNpTEdcv47qeXU1dpe5raW8R6XOs6uPaLRHRWwpSfFlElCVeRkfJ/9eNTe82mK405uRWsREznVb+Ocg47ByybTKNtP1KWjM2yc4LyJBqIjMufhyQuk5gFbOpX+yNZ/VOb/AObLYR/H9njPrKm77vt6LJiyYAAAAAAAAAiPe8PbdhqXNoei7GtqtpSK9acVnWqeWUO+nmTZn8iXlI8iZU4Rtpc8TcLw5GNzq6Z6eLVMZ/twfjIzGuyupyvI67O49jEzSJYyUZSxb+59eU/3FHIOSb3K1OKWZmo1GZmZ88nyPkz3vqxjGjGxx1+rf/jZn7ktOtmPTtr5NWZNWumhOuXY8kptnGp0oIkMWchta0GtPp7bZ/xG0cJcPnhCPpfjTaaavnfkdPVo2AD0IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANUsTcHTS5v9kq3hozFZmxKnPcpprSxrtYzLkpbFZbSIsWTIntV81L8h1ltKnle7+35fKn4Dxxubc56ojOZ7Hp6bxjE6Y5r6aHudSXuv483SeMs4lgqZ0lqNTR6B7G20yUqI31pgPRoqi8jMj8/DhX9pj07c1mP68EbxMTrxTMNsAAAAACmWlVL3RvXZ/YOSSn8Mwr6jV2kCWSvadYhPk5klwyRmptRS5zaYzTqDIzbjmR/EQ2/72m3Zwj/Kt/61ivjKuvZWX1WtJ+ybLVtpLjdzWbB2BiLOFvWkbKXsqhklmMh+Ig0NvROUJS8t5s2DZJRkrkkmJbvxzMzHu88qbfXpn2tlZwcqs8IbrpN2WN5pNp22ZmQVzLMlMOyWwROvx2ZSHGlkh3k0pcSaTL4kPViZjvefTKGE6j3mRlz2wyRRF8S/wtihc/8A8aJ/Hf8A7z9o/wBN9Vf+vq6vTxiRF0Fj0WXPctZcXIcxZl2rraGnJbreU2qVyFttESEKcURqNKC8SM+C9Bz8f2eM+sm77vt6LOi6YAAAAAAAAAANcne7ojR9mKN/OMHYi0W76KL4wZyvFmPfR2U/JBnL9CJwiLhl4/2f2F/w+Db82/sdescV9ne6NJ4Kw9AP+OJWNOw9z9jcbQvIWlrPCdXWbSXG4PiZp+vs2VeSVvHxyyyfJNlw4vlzxJqex+P22+ym9v50quDl3SFnF8gnbF6m5/N6655LX79ljsNJysPt1kZH7c2nX5NtEfHBG0XijkzS35eorOxjWk4nySjezpaM+rzKXuVmWo7SDhvdHWT+qpsl1MWr3Jj6XbPCrNw/EkqU8gluwlLM+fBzy4LlS/bIcjfms4vGO92dqLa0nPd2r7Ud9SZPUwL/ABu4hX9HatE/WXNc+3KiyGlfBbTzSlIWR/2kY9ETExmEZjHF6o64AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKkdXsno4tbvDGZtlDp7nDds5w/d45IcNl+vhz7d+xiyXSfX5KZlsvlJQ7wTZks0p/YMQ2bRrHfKu5HD6QzjrjtG329hmT5fPdhWFKjOcoqcEyGvR4xrWgrbN6LAmtmS1kslIQaPNJ8L8fIiLnga2rzeJnvlncr0zjuT+KsAAAAAD5QhDaSQ2kkIT6JQkuCL/oRAHgjz9zwL3OPHz49ePjxz/YA+gABWzqV/sjWf1Tm/+bLYR/H9njPrKm77vt6LJiyYAAAAAAAAAAAAAAPNt6eoyCsm0t9VQ7umsmjYsamwYbkxpDSvih1l1KkLSf8AYojIcmInSSJwoZfdNMo1Zaz826YbJe09by3DlWupbg3bHCLZ3g+SVFX7jkNauePca8vEvlbS2XqPPOxNZzScd3YvG7FtLxn1dnFu73+DbyFr/t1r2Z15zSUv2K7LHjOZhtsojV/EiWzfmhnki8jS6oyQX7bhH6Dtd/E4vGJ8idnOtZz6r4wJ8G0hRbKsmsWNdOaS9CnxXEvMvNrLlK23EGaVJMvUjI+B6InKDtgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1cZ/rfL+2ec5rmWMaT0k5juu8gssNpMn2XBtZ11fzMffXDlrWdRIjExDRKQ420l73V/Ka/Akq8T8lq23JmYiNOf/D0VtFIxMz4Lp9ds+i55rhpKcPh6+tsDtrHCcowet8Dr6uzx99UOQxBW0htCo3yJWyaUkXgoi45IxfatFq8MY0+yW5XEp0FGAAAAAAAAAAAVs6lf7I1n9U5v/my2Efx/Z4z6ypu+77eiyYsmAAAAAAAAAAAAAAAAAMdyrEcWzminYxmWPV2U49ZoNufS2kZuVGdIy4+Zt1Kk8lz6H8S+JDk1iYxLsTMcFEpvUjZ2iJsrJ+l+yl41WreVKsev2ZuvWWJTTUpS1phPKUqRBWsz+KVGaj45cQkuB552bU1pPhPD+fzK3yxb3x4sowHvDi6Mji607G4jY9atrO8NsV2TKSqhs1EaUm5WXaSKO4g1K/eNJEfyktZjtd+OFoxLltmcZrrC8bTrT7TbzLiXmXkktp1BkpKkqLklJMvQyMvgY9CLkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAarLCuZrOw2Y6/1/28znGMj2tl81y9pMcxCslY3V3LkFcwoDtg7EVGZm/RRuV+K/fcNHm985mY8eMXmItxnk9P/jma8E4daNOXmIOQ5OK9qMi2Nr3EL7Ia3IMKnUlUwmTcplS27NM6b9Mmct9E9xby3FOGpai/aUg/Wm1SY4WzDG5fPGNV4x6EQAAAGO5bU3N7jdxUY9lEnC7ufHNqtyqHHjS34LhmRk6hiY26wsy444WkyHLRMxo7E4lQ9m33NgfYarxKd2PyDZGDa7wy0z7fEazx/HorEaAba2aaCzIroDLiZEh1p99STWk/aZ5L9oebNq392kRmVv6zXONZ0h41ft/sLj+u9Q9psvziBOwTZ97QJyrSrdZFag0eNZZKbjVsqBaIaKc9LilIYcd95Ztu+S0klvxSYdd4iLzOk9nc701mZrHGO1sfsLGvqIMu0tp0esrK9pT8+xluoZYYaQXK3HHHDSlCUl6mZnwQ9Mzh50d/636WP0Lb2FGZ/Av5/Xf+3Gflpzj7tdFuSOOoj7EnRVLJivtSosnJs0eiymFpcadbXldspDjbiDNK0qIyNKiMyMvUhP8AH9njPrLW77vt6LLi6YAAAAAAAAAAAAAAAAAAADCc/wBb4FtPHZOJ7FxKszHHpfq5WWkdLyEr+xxpRl5NrT9i0GSi+wyGbVi0Yl2tprOYUbX1n391vdVa9Q9kHk2DMK9x/rnsOQuXXk3ynybprVSidiq4I/BK1Enn5nFr+Ah8V6eydOUrfJW/ujXnCTdWd1tfZXkLettsUtj163K2SUP6/wA0IozUpavQlVlkokR5Taz9EH8il/uIUXqNU/IiZxbSWbbMxGY1hc0XSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABrhzTU3YbBMypE6txHE9m4PT7VuNrUzlhefyCziTb+HasTq+ek4rzchpuRareafSZue2kmVI+Cx5bbd4nTWM59f8Ab0VtWY100wm3rTLwzCol7rK225heY73vcivsy2ljeO2bK1Rre1lqkzWY0Bby5TbEUloZSbiSVwklKJJq8S3s4rGJmM5zLG5mdcaLYKUSSNSjJKUlypR+hERfaYuk8wrylMuSt4Rl/aUhv/6w5mDD0kLQ6hDja0uNuESkOJMjSoj9SMjL4kY6PoB0rKaddXT7AokmwOBGdkFAhoJyS/7SDX7TKDNJKWvjhJclyY5OgqjoTUV/N1ns3Idu1yqjZvZeXZXGxa/yQ89VQJsdUCqpkuklJqTX1xNtkSufFw3PUxHb25ms9XGVb31jHCFfqzB93ZjqvTfUnKdVWVC1rS6xqPsfazr8NWMzsZxCU1JhuVDyJCpT0meiJHR7S46TaUpfucEn1nEWtEUmOHHlhvNYmbRPFswsK6vt4MurtoMezrLBpTE+ultIeYfaWXC23G3CUlaVF6GRlwY9Uxl50d/6IaWL1LUOFEZfA/5BXf8AsBn4qco+zXXbmjjqIwxG0VSxorDUWLGybNGYsVhCW2mm0ZXbJQ222giShKSIiSkiIiL0IT/H9njPrLW77vt6LLi6YAAAAAAAAAAAAAAAAAAAAAAIy2ppvWG7McdxTaWGV2YU6iV9OmY3xIirWXibsSS2aXo7nH77S0n/AHjF6VvGsNVtNZzClx6X7U9X/KZ11zc98aqh8rPRWfyiTaw2E+Svapbv04IiMiQ26RJIv3XFCPRfb9s5jkr10v7tJ5pm033M1TtW8VgF63Y6g3DFWTNjqfNmTrbI3vUvGGt3xblkrxM0k2fmafmNtJDdN+ttJ0nkzfamuvGFuBZIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpwm9fqKiyTZ15t/oNkG312ueZVensqgu62dMsK2yt5MuApmoRax5HKIziEeBpI+S+HJjxfHETMzTOs9v+Hq65mIxbGibegWQaMbqM+xTDFUOOZM1sHMJGLa+mfTxcqrcf+sT7LEmC8o5zSWi+VROc8cERmN/jTXE/Wfrhnfi2kzyhsHyZuodxvIGsgaU/QOVstF4whLq1LhqZWT6UpYI3VGbfJESC8j/AHfUem2MaoRxaEZtX071pYtOYnrSNv8A127JWp3DrjB8rqszrkOGk+INyuuZhWLaPm8WphNOccF9QofOnorw1jxy9n954zifrGG9LWbmMva5wJ3C6d7HsPdx6sXi1BJjriPQa5UVs4sZyO5ytpTTXig0K9UmXBj6FMYjDx2zmcs3GnAAAAAAAVs6lf7I1n9U5v8A5sthH8f2eM+sqbvu+3osmLJgAAAAAAAAAAAAAAAAAAAAAAAACHNxaA1FvqkKj2lhUHI0sJMqy3NJsWUBR8mS4k1o0vNGR+vCVeKj/aSovQTvtVvGsN0vNeCo6sN7hdWTJ3W1452x0xC//wA+yeQmPmtXGSaS8IFpx4TSQkj4S4XPHCG2vtEenc2+H9o8/wCfzCmaX46T5J80l2603vKU5jlPbycQ2RAM27rVOVsnVX8R5BEbiPpXjL3vHn1No1cfvePwFab1b6drF9q1fos+KpgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADWTtGn7V4Fm+Y3+Rb3zpenLS0kzsfyLX+OY/cLxiC++am4dvTPw12DjUZtXj9TFU+ZpT5ONN/EeS/XWZmZnHdr5PRXomOGq32haejew6uy1nZVfvOzt1POsbcbrqmJKkx3PEijKX

Скачать книгу