ТОП просматриваемых книг сайта:
Алгоритмы для жизни: Простые способы принимать верные решения. Брайан Кристиан
Читать онлайн.Название Алгоритмы для жизни: Простые способы принимать верные решения
Год выпуска 2016
isbn 978-5-9614-4852-8
Автор произведения Брайан Кристиан
Издательство Альпина Диджитал
Ежели мистер Мартин любезнее вам всякого другого мужчины, ежели никогда и ни с кем не было вам так приятно, как в его обществе, тогда зачем колебаться?
Каждый год влюбленные парочки студентов-первокурсников возвращаются после совместных каникул по случаю Дня благодарения, разругавшись в пух и прах. Это так часто происходит, что у психологов колледжей есть даже специальное словечко: turkey drop.
Однажды к психологу на прием пришел Брайан, крайне возбужденный первокурсник. Его школьная подружка уехала учиться в другой колледж, и теперь у них был классический роман на расстоянии. Кроме того, их мучил непростой философский вопрос: а хорошие ли у них отношения? Сравнивать им было не с чем. Психолог посочувствовала Брайану, сказала, что это типичная дилемма первокурсников, и невозмутимым тоном предложила удивительное: «Собирай данные».
Сторонники серийной моногамии, как правило, сталкиваются с фундаментальной неизбежной проблемой. Когда можно считать, что вы познакомились с достаточным количеством людей, чтобы найти свою половинку? А что, если вы уже пропустили ее? Настоящая «уловка-22» в любовных делах!
Ответ на крик души этого влюбленного первокурсника содержится в теории, которую математики называют «задачей об оптимальной остановке». И звучит он так: 37 %.
Ну или как-то иначе. Все зависит от ваших взглядов на любовь.
Задача о секретаре
В любой задаче об оптимальной остановке критически важный вопрос – не «какой вариант необходимо выбрать», а «как много вариантов необходимо рассмотреть и учесть». Эти задачи имеют значение не только для влюбленных или арендаторов, но и для водителей, домовладельцев, грабителей и т. д.
Правило 37 %[2] произошло от самой известной головоломки об оптимальной остановке, которая со временем стала известна как «задача о секретаре». Исходные данные задачи очень напоминают дилемму о поиске квартиры, которую мы рассматривали ранее. Представьте, что вы проводите собеседование с рядом кандидатов на позицию секретаря и ваша цель – выбрать и принять на работу единственного кандидата, лучшего из всех. Пока у вас нет представления, как распределить баллы между каждым из претендентов, вы можете легко определить, кому вы отдаете предпочтение. (В этом случае математик сказал бы, что вы оперируете только порядковыми числами – вы сравниваете только соответствующие качества, которыми обладают все кандидаты. Но вам недоступны количественные числа – вы не можете ранжировать эти качества в общей шкале.) Вы интервьюируете претендентов в произвольном порядке, по одному за раз. Вы можете принять решение нанять кандидата в любой момент собеседования, а он, в свою очередь, примет ваше предложение и завершит свои поиски работы. Но при этом, если вы упустите кандидата, решив не нанимать его, вы потеряете его навсегда.
Считается, что задача о секретаре впервые была опубликована (без непосредственного упоминания
1
В переводе М. Канна. –
2
Жирным шрифтом выделены названия алгоритмов, которые будут описаны в книге.