ТОП просматриваемых книг сайта:
Роботы наступают: Развитие технологий и будущее без работы. Мартин Форд
Читать онлайн.Название Роботы наступают: Развитие технологий и будущее без работы
Год выпуска 2015
isbn 978-5-9614-4386-8
Автор произведения Мартин Форд
Жанр Прочая образовательная литература
Издательство Альпина Диджитал
Готов поручиться, что в ближайшие годы и десятилетия почти всем нам предстоит столкнуться с поражающими воображение проявлениями прогресса. И речь не только о технических новинках как таковых: влияние набирающего обороты прогресса на рынок труда и на экономику в целом вот-вот перерастет в нечто такое, что не укладывается в общепринятые представления о взаимодействии технологий и экономических процессов.
Одно из мнений, которое наверняка подвергнется пересмотру, это мнение о том, что автоматизация главным образом угрожает малоквалифицированным работникам с низким уровнем образования. Это допущение исходит из убеждения, что такая работа обычно носит рутинный характер. Однако вместо того, чтобы успокаивать себя этой мыслью, задумайтесь, насколько быстро расширяются пределы понятия «рутина». Когда-то «рутинной» называли работу на конвейере. В наше время это уже далеко не так. Разумеется, профессии, не требующие особой квалификации, по-прежнему относятся к «рутинным», но при этом, учитывая, как быстро растут возможности ПО для автоматизации и алгоритмов прогнозирования, огромному количеству белых воротничков с высшим образованием предстоит столкнуться с той же проблемой.
На самом деле прилагательное «рутинный» не совсем подходит для описания профессий, являющихся наиболее вероятной жертвой новых технологий. Более точным представляется другое прилагательное – «предсказуемый». Может ли другой человек научиться тому, что вы делаете в рамках своих должностных обязанностей, подробно изучив описание ваших действий? Можно ли освоить ваше ремесло, повторяя за вами те задачи, работу над которыми вы уже завершили, подобно тому, как при подготовке к экзамену учащийся выполняет практические задания? Если это так, то вполне вероятно, что однажды появится алгоритм, который сможет научиться делать всю работу – или значительную ее часть – за вас. Причем вероятность именно такого развития событий многократно увеличивается по мере все более глубокого проникновения в нашу жизнь такого феномена, как «большие данные»: организации собирают невообразимое количество информации практически обо всех аспектах своей деятельности, и с большой долей вероятности можно утверждать, что эти данные включают подробные сведения об огромном количестве профессиональных навыков и операций. Так что остается лишь дождаться дня, когда появится изощренный алгоритм машинного обучения, который, углубившись в оставленные предшественниками-людьми цифровые следы, сам всему научится.
Из этого следует вывод, что, скорее всего, от автоматизации в будущем не спасет ни получение дополнительного образования, ни освоение новых навыков. Взять, к примеру, рентгенологов – врачей, специализирующихся на интерпретации рентгеновских снимков. Чтобы стать специалистом в этой области, нужно очень долго учиться: обычно на освоение этой профессии уходит не меньше тринадцати лет. Однако компьютеры стремительными темпами догоняют человека