Скачать книгу

Сравнивая расчетное значение статистики с критическим, получаем , то есть –0,56 < 1,65. Значит, гипотеза H0 принимается.

      По сути, все разновидности t-теста и построение доверительного интервала для коэффициента – это две стороны одной медали. Полезные результаты можно получать и тем и другим способом, выбор способа ответа на вопросы о незначимости коэффициента при регрессоре и соотношения коэффициента регрессора с заданным значением возлагается на исследователя.

      5. Проверка гипотезы о совместной незначимости коэффициентов

      В рассматриваемой нами модели зависимости заработной платы после проверки незначимости коэффициентов при отдельных регрессорах осталось две независимых переменных: образование и опыт работы у текущего работодателя. Однако с экономической точки зрения очевидно, что на уровень заработной платы сотрудника могут влиять и некоторые другие факторы, например, уровень интеллекта (IQ), возраст, образование и заработок родителей, общий уровень знаний и проч. Когда мы отбираем регрессоры для модели, мы, с одной стороны, должны руководствоваться соображениями экономической обоснованности и осмысленности, а с другой – нужно иметь в виду и эконометрические аспекты. Так, например, нужно помнить, что если не включить существенные регрессоры в модель, оценка для дисперсии ошибок модели получится смещенная, и тогда тесты на незначимость будут работать некорректно. Если же включить несущественную переменную, оценки для коэффициентов хоть и будут несмещенные, но получатся неэффективными. Таким образом, отбирая регрессоры для модели, нужно учитывать как содержательные аспекты, так и эконометрические.

      Предположим, что с точки зрения экономического смысла мы определились с регрессорами и решили построить следующую модель [файл с данными wage2.gdt]:

      

      

,

      где

– средняя заработная плата в месяц в долларах,
– уровень образования в годах,
– опыт работы в годах,
– опыт работы у текущего работодателя в годах,
– образование матери, – образование отца2.

      На рис. 5.1 дана распечатка оцененной регрессии. По распечатке можно сделать вывод, что в целом регрессия значима, но не все коэффициенты значимы по отдельности.

      

      На 5 %-ном уровне значимости сразу несколько коэффициентов перестают быть значимыми. Если бы не значим был лишь один коэффициент в модели, его можно было бы исключить, но в случае незначимости нескольких коэффициентов можно ли исключить соответствующие регрессоры из модели на том основании, что коэффициент каждого из них в отдельности не значим на 5 %-ном уровне? Чтобы ответить на этот вопрос, нужно вспомнить о том, что существенные регрессоры исключать из модели некорректно, но оставлять несущественные регрессоры в модели тоже не является правильным. Поэтому для того, чтобы понять, можно ли исключить все регрессоры, чьи коэффициенты не значимы на 5 %-ном уровне, или нужно исключить

Скачать книгу