Скачать книгу

новыми свойствами. Например, коллектив под руководством Стивена Беннера достиг больших успехов в создании альтернативных нуклеотидов. Эти искусственные звенья хорошо встраиваются в ДНК и РНК обычными природными ферментами, образуют комплементарные пары друг с другом, но не со стандартными нуклеотидами А, Г, Т и Ц, и расширяют нуклеотидный алфавит до шестибуквенного (рис. 6.1) (Malyshev et al., 2014; Yang et al., 2011 (русский краткий анонс: http://www.chemport.ru/datenews.php?news=2557)).

      Получается, что с задачей хранения генетической информации в принципе могут справиться самые разные варианты нуклеиновых оснований, и А, Г, Т, Ц, возможно, были отобраны природой совсем по другим признакам. Как считает известный биофизик Армен Мулкиджанян, таким признаком была устойчивость к ультрафиолетовому излучению (Mulkidjanian, A. Y., Galperin, M. Y., 2007).

      Здесь надо пояснить, как устроены молекулы и как происходит их взаимодействие со светом. Каждая химическая связь, изображаемая в структурных формулах линией между атомами, обычно состоит из двух электронов, которые вместе движутся между двумя связанными атомами. У каждого электрона есть собственное магнитное поле, направление которого называется «спин». Два электрона, образующие химическую связь, имеют противоположные спины, так что их магнитные поля взаимно компенсируются. Такие электроны называются «спаренными». Если молекулу разорвать на две части, то электроны из разорванной связи имеют два варианта дальнейшей судьбы. Они могут разойтись по одному в каждый фрагмент молекулы или оба вместе в один из фрагментов. В первом случае эти электроны остаются без пары и готовы к образованию новой связи с любой подходящей молекулой. Фрагменты молекул, имеющие неспаренный электрон, очень химически активны и называются «радикалы». Во втором случае, когда одному фрагменту достаются два электрона, а другому – ни одного, эти фрагменты имеют электрический заряд и называются «ионами». Неспаренных электронов в них нет, и они более стабильны, чем радикалы.

      Когда в молекулу попадает фотон с подходящей энергией, он поглощается парой электронов, образующей химическую связь, и молекула переходит в возбужденное состояние с избыточной энергией. Возбужденных состояний как минимум два. Сначала молекула оказывается в неустойчивом и короткоживущем состоянии (так называемом синглетном состоянии). В нем спины электронов возбужденной пары еще антипараллельны, как и в спокойном состоянии молекулы. В синглетном состоянии молекула может сбросить возбуждение и вернуться в исходное состояние путем флюоресценции (излучения светового кванта с энергией чуть меньше исходной) или рассеяния энергии в тепло либо перейти в следующее – триплетное – состояние, в котором спины электронов становятся параллельными и химическая связь между атомами фактически разрывается. Если в молекуле была возбуждена одинарная связь, то молекула разрушается в этом месте. Если же была возбуждена двойная связь (точнее, так называемая пи-электронная система,

Скачать книгу