Скачать книгу

с облучаемой можно судить о передвижении фракции меченных флуоресцентным красителем белков и, наоборот, по остаточной флуоресценции можно определить долю неподвижных молекул. FLIP часто используется в комбинации с FRAP, чтобы получить обобщенную информацию об активном и пассивном перемещении меченых белков.

      1.5.3. Локализация флуоресценции после фотоотбеливания (Fluorescence Localization After Photobleaching – FLAP)

      С помощью метода FLAP можно в реальном времени следить за перемещением флуоресцентно меченой молекулы в пространстве. Техника FLAP была разработана Graham Dunn в 2002 г. и состояла в том, что к молекулам интереса пришивали две различные флуоресцентные метки, одну из которых отбеливали, а с помощью второй следили за перемещением молекулы. Для реализации этого метода оба красителя должны визуализироваться одновременно и независимо, тогда FLAP сигнал получают путем вычитания отбеленного сигнала из неотбеленного для каждого пикселя.

      1.5.4. Фёрстеровская (флуоресцентная) резонансная передача энергии (Fӧrster (Fluorescence) Resonance Energy Transfer – FRET)

      Фёрстеровская резонансная передача энергии, или иначе диполь-дипольный перенос энергии, – это механизм переноса энергии между двумя молекулами (от донора к акцептору), который происходит без промежуточного испускания фотонов и является результатом диполь-дипольного взаимодействия между донором, находящимся в возбужденном состоянии, и акцептором. Характерная черта данного процесса – тушение флуоресценции донора и возникновение более длинноволновой флуоресценции у акцептора, которая детектируется конфокальным микроскопом. При этом перенос возбуждения сопровождается уменьшением времени жизни и квантового выхода флуоресценции донора, для которого акцептор выступает в роли тушителя. Скорость переноса убывает как r –6, где r – расстояние между донором и акцептором, что используется для измерения расстояния между двумя молекулами или между двумя метками в одной молекуле. Для характеристики этого явления вводится понятие фестеровского радиуса (RF) – это эффективное расстояние, на котором скорость перехода составляет 50 % от максимума (для большинства систем его величина составляет 20 – 50 Å). Если расстояние между донором и акцептором превышает 10 нм, то диполь-дипольный перенос энергии не возможен. Помимо расстояния скорость переноса зависит от степени перекрывания спектров испускания донора и поглощения акцептора, от взаимной ориентации диполей донора и акцептора и от времени жизни возбужденного состояния донора в отсутствие акцептора. Константа скорости переноса энергии ket определяется выражением:

      где τd – время жизни возбужденного состояния донора в отсутствие акцептора.

      Для реализации технологии FRET необходимо, чтобы:

      1) донорный зонд обладал достаточным временем жизни для осуществления переноса энергии;

      2) молекулы донора и акцептора располагались на расстоянии 1 – 10 нм друг от друга;

      3) спектр поглощения флуорохрома акцептора накладывался

Скачать книгу