ТОП просматриваемых книг сайта:
120 практических задач. Джейд Картер
Читать онлайн.Название 120 практических задач
Год выпуска 2024
isbn
Автор произведения Джейд Картер
Издательство Автор
@tf.function
def train_step(images):
noise = tf.random.normal([BATCH_SIZE, 100])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = generator(noise, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
gen_loss = generator_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
def train(dataset, epochs):
for epoch in range(epochs):
for image_batch in dataset:
train_step(image_batch)
print(f'Эпоха {epoch + 1} завершена')
# Генерация изображений в конце каждой эпохи
if (epoch + 1) % 10 == 0:
noise = tf.random.normal([16, 100])
generate_and_save_images(generator, epoch + 1, noise)
# Шаг 6: Обучение GAN
EPOCHS = 100
train(train_dataset, EPOCHS)
# Шаг 7: Генерация изображений
def generate_and_save_images(model, epoch, test_input):
predictions = model(test_input, training=False)
fig = plt.figure(figsize=(4, 4))
for i in range(predictions.shape[0]):
plt.subplot(4, 4, i+1)
plt.imshow((predictions[i] * 127.5 + 127.5).numpy().astype(np.uint8))
plt.axis('off')
plt.savefig(f'image_at_epoch_{epoch:04d}.png')
plt.show()
# Генерация изображений после обучения
noise = tf.random.normal([16, 100])
generate_and_save_images(generator, EPOCHS, noise)
```
Пояснение:
1. Импорт библиотек: Импортируются необходимые библиотеки TensorFlow, Keras, numpy и matplotlib.
2. Подготовка данных: Загружаются и подготавливаются данные CelebA. Изображения нормализуются в диапазоне [-1, 1].
3. Построение генератора:
– Генератор создает изображения из случайного шума. Он включает плотные слои, batch normalization и Conv2DTranspose слои для генерации изображений размером 64x64 пикселей.
4. Построение дискриминатора:
– Дискриминатор оценивает, являются ли изображения реальными или сгенерированными. Он состоит из свёрточных слоев, слоев LeakyReLU и dropout для классификации изображений.
5. Построение и компиляция GAN:
– Генератор и дискриминатор объединяются в модель GAN. Определяются функции потерь и оптимизаторы для обеих моделей. Процедура `train_step` выполняет одну итерацию обучения GAN.
6. Обучение GAN:
– GAN обучается в течение заданного числа эпох. На каждом шаге обучения генератор пытается создать реалистичные изображения, а дискриминатор учится отличать реальные изображения от сгенерированных.
7. Генерация изображений:
– После обучения GAN, создаются и сохраняются изображения, сгенерированные генератором.
Этот пример демонстрирует, как создать сложную GAN для генерации реалистичных изображений лиц. Модель может быть улучшена за счет добавления дополнительных
9. Развертывание модели в продакшн
– Задача: Создание REST API для модели.
Развертывание модели машинного обучения в продакшн включает создание REST API, который позволяет клиентам взаимодействовать с моделью через HTTP запросы. В этом примере мы будем использовать Flask, популярный веб-фреймворк на Python, для создания REST API, который может обрабатывать запросы на предсказание с использованием обученной модели.
Шаги:
1. Импорт библиотек и загрузка модели.
2. Создание Flask приложения.
3. Определение маршрутов для API.
4. Запуск сервера.
Пример кода:
1. Импорт библиотек и загрузка модели
```python
import numpy as np
import tensorflow as tf
from flask import Flask, request, jsonify
#