Скачать книгу

ничего общего с реальным положением вещей. Этот бар отнюдь не относится к числу заведений, где коротают свободное время мультимиллионеры, – здесь обычно отдыхают молодые люди с относительно невысоким уровнем годовых доходов. Просто сегодня им повезло оказаться в компании с Биллом Гейтсом и его говорящим попугаем. Именно высокая чувствительность среднего значения к значениям, резко отклоняющимся от центра, не позволяет нам измерять экономическое благополучие среднего класса с помощью такого показателя, как величина дохода на душу населения. Поскольку в последнее время наблюдается резкий рост доходов в верхней части распределения – глав компаний, управляющих хедж-фондами и выдающихся спортсменов, таких как Дерек Джетер, – величина среднего дохода в США может быть сильно искажена, как в вышеупомянутом баре, где несколько парней с относительно скромными доходами случайно оказались в компании Билла Гейтса.

      По этой причине нам приходится пользоваться еще одной статистикой, которая также является отражением «середины» распределения, однако делает это несколько иначе. Речь идет о так называемой медиане. Медиана – это точка, которая делит распределение пополам таким образом, что одна половина наблюдений располагается выше медианы, а другая половина – ниже. (При наличии четного количества наблюдений медиана представляет собой среднюю точку между двумя средними наблюдениями.) Если мы вернемся к примеру с баром, то срединный (медианный) годовой доход для десяти человек, сидевших поначалу за стойкой, равняется 35 000 долларов. Когда в заведении появился – и уселся на одиннадцатый стул – Билл Гейтс с говорящим попугаем, срединный годовой доход для одиннадцати человек по-прежнему составлял 35 000 долларов. Если представить, что посетители бара расселись за его стойкой в порядке возрастания их доходов, то доход посетителя, сидящего на шестом стуле, будет срединным для данной группы людей. Даже если бы в заведение зашел Уоррен Баффет и уселся рядом с Биллом Гейтсом на двенадцатый стул, медиана все равно осталась бы неизменной[10].

      В случае распределений без «отщепенцев» срединное (медиана) и среднее значения совпадают. Выше говорилось о гипотетической сводке данных, отражающих качество принтеров конкурирующей фирмы. В частности, я представил эти данные в виде так называемого частотного распределения (гистограммы). Число проблем с качеством на один принтер представлено на горизонтальной оси (внизу); высота каждого вертикального столбца соответствует проценту проданных принтеров, у которых наблюдалось такое число проблем с качеством. Например, у 36 % принтеров конкурента в течение гарантийного периода возникало по две проблемы с качеством. Поскольку это распределение включает все возможные случаи проблем с качеством (в том числе и их отсутствие), сумма всех долей (процентов) должна равняться 1 (или 100 %).

      Поскольку

Скачать книгу


<p>10</p>

После того как в баре оказалось бы двенадцать посетителей, медианой была бы средняя точка между доходом посетителя, сидящего на шестом стуле, и доходом посетителя, сидящего на седьмом стуле. Поскольку доход того и другого составляет 35 000 долларов, медиана равняется 35 000 долларов. Если бы доход одного из них равнялся 35 000, а доход другого – 36 000, то медиана для этой группы в целом равнялась бы 35 500 долларов.