ТОП просматриваемых книг сайта:
Нейросети. Генерация изображений. Джейд Картер
Читать онлайн.Название Нейросети. Генерация изображений
Год выпуска 2023
isbn
Автор произведения Джейд Картер
Издательство Автор
Сверточные слои (Convolutional Layers) – это основные строительные блоки в архитектурах генеративных нейронных сетей (GAN) для обработки изображений. Они играют ключевую роль в создании генератора для генерации изображений и дискриминатора для классификации изображений на "реальные" и "сгенерированные". Рассмотрим их подробнее:
Сверточные слои работают с пространственными структурами данных, такими как изображения. Вместо того чтобы каждый пиксель рассматривать независимо, они используют небольшие окна (фильтры) для обнаружения локальных паттернов, таких как границы, текстуры или другие визуальные характеристики. Фильтры сверточных слоев применяются к различным областям изображения, чтобы выделить различные признаки.
Первые сверточные слои обычно обнаруживают простые признаки, такие как ребра, углы и текстуры. Последующие слои строят более абстрактные признаки, объединяя меньшие детали в более сложные структуры, такие как объекты и образцы.
Архитектура сверточных слоев включает следующие основные компоненты:
– Фильтры (ядра): это матрицы весов, которые применяются к небольшим окнам входного изображения. Количество фильтров определяет количество выходных каналов в сверточном слое.
– Размер окна (Kernel Size): это размер фильтра, который указывает на его область входного изображения. Часто используются фильтры размером 3x3 или 5x5.
– Шаг (Stride): это параметр, который определяет, насколько далеко перемещается фильтр при применении к изображению. Шаг 1 означает перекрытие, а шаг 2 – нет.
– Заполнение (Padding): это параметр, который позволяет сохранить размеры изображения после свертки. Заполнение добавляет нулевые значения вокруг входного изображения, чтобы убедиться, что фильтр может применяться к пикселям на границах.
Пример использования в GAN:
В генераторе, сверточные слои могут использоваться для увеличения размера скрытых представлений и создания более сложных структур изображений. Они могут быть задействованы в процессе декодирования входного вектора шума из латентного пространства в изображение.
В дискриминаторе, сверточные слои позволяют анализировать изображения и выделять важные признаки, которые помогают отличить реальные данные от сгенерированных.
Современные архитектуры GAN часто используют сверточные слои в различных комбинациях, таких как сверточные нейронные сети (CNN), сверточные автокодировщики (CAE) и условные GAN (cGAN). Эти архитектуры эффективно генерируют изображения, улучшают качество генерации и устойчивы к различным типам данных и задачам.
Сверточные слои являются ключевым инструментом для работы с изображениями в архитектурах GAN и имеют большое значение для успешной генерации и дискриминации данных.
2. Пакетная нормализация (Batch Normalization):
Пакетная нормализация (Batch Normalization) – это техника, применяемая в нейронных сетях, включая генеративные нейронные сети (GAN), для стабилизации обучения и улучшения производительности