Скачать книгу

использовать для создания новых продуктов, обнаружения новых идей и шаблонов, а также для улучшения процесса управления запасами в производственной или сбытовой компании.

      В здравоохранении системы искусственного интеллекта можно использовать для анализа огромных объемов данных с медицинских или диагностических изображений для выявления определенных заболеваний и изменений в тканях.

      В соответствии с законом системы ИИ могут обеспечивать поддержку принятия решений в области подготовки к судебному разбирательству, объективности, фактов и другой юридической информации. Они могут выявлять потенциальные предубеждения в доказательствах и представлять данные на рассмотрение судов.

      Наконец, системы ИИ могут помочь в различных отраслях с производством и логистикой. Системы искусственного интеллекта могут помочь сократить объем запасов на заводе или использовать беспилотные транспортные средства и машины, чтобы сократить время и усилия, необходимые для доставки грузов.

      Текущие приложения ИИ включают ряд проблем в области обработки информации, компьютерного зрения, распознавания речи, распознавания текста, обработки изображений, обработки видео, обработки звука, машинного обучения. Многие из лежащих в основе алгоритмов машинного обучения разрабатывались десятилетиями, и сейчас многие системы достигли своих пределов.

      ИИ начинает достигать предела производительности технологии в определенных задачах и переходит в новые и более сложные области.

      Из-за разнообразия приложений пройдет несколько лет, прежде чем системы ИИ полностью раскроют свой потенциал. В деловом мире системы искусственного интеллекта могут повысить эффективность и скорость компании, а также сократить или устранить ненужные расходы за счет анализа данных и разработки новых процессов для создания новых продуктов.

      Система ИИ может использовать информацию, которая была предоставлена системе, чтобы определить, должна ли она делать прогноз относительно результата конкретного решения. Например, система ИИ может понять, что было принято определенное решение на основе информации, предоставленной пользователем. Затем он может определить, является ли прогноз, предоставленный пользователем, точным. Если прогноз, который делает система ИИ, точен, она может сократить время обработки и повысить точность принятия решений.

      Логико-лингвистическое моделирование

      Логико-лингвистическое моделирование представляет собой шестиэтапный метод, разработанный в первую очередь для построения систем, основанных на знаниях, но он также применяется в ручных системах поддержки принятия решений и системах анализа и доставки информации. Он использует структурированные модели, основанные на знаниях, такие как графики, блок-схемы, сети и циклы обратной связи, для описания потока информации в сложных системах, таких как

Скачать книгу