Скачать книгу

(d) p-i-n planar structure [13].

      2.4.2 Planar Heterostructures

      2.5.1 High Optical Absorption

      The absorber layer is generally referred to as the heart of the solar cell. The material of this absorber is made of organic inorganic hybrid perovskite. This absorber material has a direct band gap with high absorption coefficient. These properties have permitted to be used as very thin compact absorber materials for gathering light which have thickness in the range of hundreds of nanometers. Whereas the thickness of the film for the traditional solar cell (silicon and germanium) is the range of one micrometer to hundreds of micrometers.

      Out of the three generations of solar cell, the first-generation absorber is an indirect bandgap semiconductor material. In this type of semiconductor, the minimum value of conduction band and maximum value of valence band does not lie for the same value of k. Because of this, the momentum of the electron in conduction and valence band is different.

Schematic illustration of transitions in direct and indirect semiconductor.

      2.5.2 High Open-Circuit Voltage

Graph depicts the open-circuit voltage versus optical band gap.

      Every data related to GaAs, Si, CIGS, CdTe, nanocrystalline Si (nc-Si), amorphous Si (a-Si), copper zinc tin sulfide/selenide (CZTSSe), organic photovoltaics (OPVs), and DSSCs were provided by the solar cell efficiency tables of Green et al. [35].

      CdTe solar cell was the most successful solar cell commercially till 2015 with 19.6% efficiency with losses of approximately 0.59eV. The basic losses of CdTe solar cells are high as compared with perovskites cells [35]. The recombination rate (nonradiative) in perovskite absorber material is lower than polycrystalline film semiconductor [32]. High output voltage is one of the important factors which is responsible for high power conversion efficiency. We know that perovskite is placed in a very good position

Скачать книгу