Скачать книгу

Plant Interact., 9, 1, 143–151, 2014, doi: 10.1080/17429145.2013.784815.

      Lee, C.-G., Fletcher, T.D., Sun, G., Nitrogen removal in constructed wetland systems. Eng. Life Sci., 9, 1, 11–22, 2009, doi: 10.1002/elsc.200800049.

      Lee, S., Maniquiz-Redillas, M., Choi, J., Kim, L.-H., Causes and control measures for algae occurrence in a constructed wetland treating stream runoff from agricultural land use. Desalination Water Treat., 63, 404–411, 2017, doi: 10.5004/dwt.2017.11445.

      Lefebvre, S., Marmonier, P., Pinay, G., Stream regulation and nitrogen dynamics in sediment interstices: Comparison of natural and straightened sectors of a third-order stream. River Res. Appl., 20, 5, 499–512, 2004, doi: 10.1002/ rra.765.

      Leong, Y.K. and Chang, J.S., Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour. Technol., 303, 11, 2020, doi: 10.1016/j.biortech.2020.122886.

      Li, H.N., He, W.H., Qu, Y.P., Li, C., Tian, Y., Feng, Y.J., Pilot-scale benthic microbial electrochemical system (BMES) for the bioremediation of polluted river sediment. J. Power Sources, 356, 430–437, 2017a, doi: 10.1016/j. jpowsour.2017.03.066.

      Li, H.N., Tian, Y., Qu, Y.P., Qiu, Y., Liu, J., Feng, Y.J., A Pilot-scale Benthic Microbial Electrochemical System (BMES) for Enhanced Organic Removal in Sediment Restoration. Sci. Rep., 7, 39802, 1–9, 2017b, doi: 10.1038/srep39802.

      Li, W.W. and Yu, H.Q., Stimulating sediment bioremediation with benthic microbial fuel cells. Biotechnol. Adv., 33, 1, 1–12, 2015, doi: 10.1016/j. biotechadv.2014.12.011.

      Li, X.J., Wang, X., Zhang, Y.Y., Cheng, L.J., Liu, J., Li, F., Gao, B.L., Zhou, Q.X., Extended petroleum hydrocarbon bioremediation in saline soil using Pt-free multianodes microbial fuel cells. RSC Adv., 4, 104, 59803–59808, 2014, doi: 10.1039/c4ra10673c.

      Li, X.J., Zhang, X.L., Chen, X.D., Zhao, L.X., Sun, Y., Rushimisha, I.E., Li, Y.T., Effect of introduced-electrode on phenanthrene degradation in the soil microbial electrochemical remediation. Int. J. Energy Res., 45, 3, 4681–4693, 2020, doi: 10.1002/er.6053.

      Li, X.L., Shen, H.L., Zhao, Y.J., Cao, W.X., Hu, C.W., Sun, C., Distribution and Potential Ecological Risk of Heavy Metals in Water, Sediments, and Aquatic Macrophytes: A Case Study of the Junction of Four Rivers in Linyi City, China. Int. J. Environ. Res. Public Health, 16, 16, 13, 2019, doi: 10.3390/ ijerph16162861.

      Lipczynska-Kochany, E., Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: A review. Chemosphere, 202, 420–437, 2018, doi: 10.1016/j.chemosphere.2018.03.104.

      Liu, S.T., Feng, X.J., Li, X.N., Bioelectrochemical approach for control of methane emission from wetlands. Bioresour. Technol., 241, 812–820, 2017, doi: 10.1016/j.biortech.2017.06.031.

      Liu, W.K., Brown, M.R.W., Elliott, T.S.J., Mechanisms of the bactericidal activity of low amperage electric current (DC). J. Antimicrob. Chemother., 39, 6, 687–695, 1997, doi: 10.1093/jac/39.6.687.

      Liu, Y., Liu, N., Zhou, Y., Wang, F., Zhang, Y., Wu, Z., Growth and Physiological Responses in Myriophyllum spicatum L. Exposed to Linear Alkylbenzene Sulfonate. Environ. Toxicol. Chem., 38, 9, 2073–2081, 2019, doi: 10.1002/ etc.4475.

      Lofrano, G., Libralato, G., Minetto, D., De Gisi, S., Todaro, F., Conte, B., Calabro, D., Quatraro, L., Notarnicola, M., In situ remediation of contaminated marine sediment: an overview. Environ. Sci. Pollut. Res., 24, 6, 5189–5206, 2017, doi: 10.1007/s11356-016-8281-x.

      Logan, B.E., Hamelers, B., Rozendal, R., Schrorder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., Rabaey, K., Microbial fuel cells: Methodology and technology. Environ. Sci. Technol., 40, 17, 5181–5192, 2006.

      Lovley, D.R., Electromicrobiology. Annu. Rev. Microbiol., 66, 391–409, 2012, doi: 10.1146/annurev-micro-092611-150104.

      Lu, L., Huggins, T., Jin, S., Zuo, Y., Ren, Z.J., Microbial metabolism and community structure in response to bioelectrochemically enhanced remediation of petroleum hydrocarbon-contaminated soil. Environ. Sci. Technol., 48, 7, 4021–4029, 2014a, doi: 10.1021/es4057906.

      Lu, L., Yazdi, H., Jin, S., Zuo, Y., Fallgren, P.H., Ren, Z.J., Enhanced bioremediation of hydrocarbon-contaminated soil using pilot-scale bioelectrochemical systems. J. Hazard. Mater., 274, 8–15, 2014b, doi: 10.1016/j.jhazmat.2014.03.060.

      Lu, Q., Evaluation of aquatic plants for phytoremediation of eutrophic stormwaters, PhD thesis, University of Florida, Gainesville, (Florida, 2009).

      Luederitz, V., Eckert, E., Lange-Weber, M., Lange, A., Gersberg, R.M., Nutrient removal efficiency and resource economics of vertical flow and horizontal flow constructed wetlands. Ecol. Eng., 18, 2, 157–171, 2001, doi: 10.1016/ s0925-8574(01)00075-1.

      Lyon, D.Y., Buret, F., Vogel, T.M., Monier, J.-M., Is resistance futile? Changing external resistance does not improve microbial fuel cell performance. Bioelectrochemistry, 78, 1, 2–7, 2010, doi: 10.1016/j.bioelechem.2009.09.001.

      Madsen, T.V., Søndergaard, M., The effects of current velocity on the photosynthesis of Callitriche stagnalis scop. Aquat. Bot., 15, 2, 187–193, 1983, doi: 10.1016/0304-3770(83)90028-1.

      Maeck, A., DelSontro, T., McGinnis, D.F., Fischer, H., Flury, S., Schmidt, M., Fietzek, P., Lorke, A., Sediment trapping by dams creates methane emission hot spots. Environ. Sci. Technol., 47, 15, 8130–8137, 2013, doi: 10.1021/ es4003907.

      Malvankar, N.S. and Lovley, D.R., Microbial nanowires for bioenergy applications. Curr. Opin. Biotechnol., 27, 88–95, 2014, doi: 10.1016/j.copbio.2013.12.003.

      Mang, K.C., Ntushelo, K., Phytoextraction and phytostabilisation approaches of heavy metal remediation in acid mine drainage with case studies: a review. Appl. Ecol. Environ. Res., 17, 3, 6129–6149, 2019, doi: 10.15666/ aeer/1703_61296149.

      Manzo, L.M., Epele, L.B., Horak, C.N., Kutschker, A.M., Miserendino, M.L., Engineered ponds as environmental and ecological solutions in the urban water cycle: A case study in Patagonia. Ecol. Eng., 154, 105915, 2020, doi: 10.1016/j.ecoleng.2020.105915.

      Marella, T.K., Saxena, A., Tiwari, A., Diatom mediated heavy metal remediation: A review. Bioresour. Technol., 305, 11, 2020, doi: 10.1016/j.biortech.2020.123068.

      Marmonier, P., Archambaud, G., Belaid, I.N., Bougon, N., Breil, P., Chauvet, E., Claret, C., Cornut, J., Datry, T., Dole-Olivier, M.-J., Dumont, B., Flipo, N., Foulquier, A., Gérino, M., Guilpart, A., Julien, F., Maazouzi, C., Martin, D., Mermillod-Blondin, F., Montuelle, B., Namour, P. et al., The role of biodiversity in hyporheic processes: gaps in knowledge and needs for applications. Ann. Limnol., 48, 253–266, 2012, doi: 10.1051/limn/2012009.

      Marquez-Reyes, J.M., Valdes-Gonzalez, A., Garcia-Gomez, C., Rodriguez-Fuentes, H., Gamboa-Delgado, J., Luna-Olvera, H., Evaluación de los efectos sinérgicos de cromo y plomo durante el proceso de fitorremediación con berro (Nasturtium officinale) en un humedal artificial. Biotecnia, 22, 2, 171–178, 2020, doi: 10.18633/biotecnia.v22i2.1259.

      Martín, M., Hernández-Crespo, C., Andrés-Doménech, I., Benedito-Durá, V., Fifty years of eutrophication in the Albufera lake (Valencia, Spain): Causes, evolution and remediation strategies. Ecol. Eng., 155, 105932, 2020, doi: 10.1016/j.ecoleng.2020.105932.

      Maucieri, C., Barbera, A.C., Vymazal, J., Borin, M., A review on the main affecting factors of greenhouse gases emission in constructed wetlands. Agric. For. Meteorol., 236, 175–193, 2017, doi: 10.1016/j.agrformet.2017.01.006.

Скачать книгу