Скачать книгу

Ahn, C.B.and Cho, Z.H. (1989). A generalized formulation of diffusion effects in µm resolution nuclear magnetic resonance imaging. Medical Physics 16 (1): 22–28. doi: 10.1118/1.596393.

      13 13 McFarland, E.W.and Mortara, A. (1992). Three-dimensional NMR microscopy: Improving SNR with temperature and microcoils. Magnetic Resonance Imaging 10 (2): 279–288. doi: 10.1016/0730-725X(92)90487-K.

      14 14 Brandl, M.and Haase, A. (1994). Molecular diffusion in NMR microscopy. Journal of Magnetic Resonance. Series B 103 (2): 162–167.

      15 15 Ahn, C.B.and Chu, W.C. (1969). Optimal imaging strategies for three-dimensional nuclear magnetic resonance microscopy. Journal of Magnetic Resonance 94 (3): 455–470. doi: 10.1016/0022-2364(91)90132-D.

      16 16 Blackband, S.J., Buckley, D.L., Bui, J.D.et al. (1999). NMR microscopy – Beginnings and new directions. Magnetic Resonance Materials in Physics, Biology and Medicine 9 (3): 112–116.

      17 17 Mansfield, P. (1982). NMR Imaging in Biomedicine: Supplement 2 Advances in Magnetic Resonance, Volume 2. Amsterdam: Elsevier.

      18 18 Korvink, J.G., MacKinnon, N., Badilita, V.et al. (2019). “Small is beautiful” in NMR. Journal of Magnetic Resonance 306: 112–117. doi: 10.1016/j.jmr.2019.07.012.

      19 19 Webb, A.G. (2013). Radiofrequency microcoils for magnetic resonance imaging and spectroscopy. Journal of Magnetic Resonance 229: 55–66. doi: 10.1016/j.jmr.2012.10.004.

      20 20 Fratila, R.M.and Velders, A.H. (2011). Small-volume nuclear magnetic resonance spectroscopy. Sensors and Actuators A: Physical 4 (1): 227–249. doi: 10.1146/annurev-anchem-061010-114024.

      21 21 Kentgens, A.P.M., Bart, J., Van Bentum, P.J.M.et al. (2008). High-resolution liquid-and solid-state nuclear magnetic resonance of nanoliter sample volumes using microcoil detectors. Journal of Chemical Physics 128 (5): 052202. doi: 10.1063/1.2833560.

      22 22 Badilita, V., Meier, R.C., Spengler, N.et al. (2012). Microscale nuclear magnetic resonance: A tool for soft matter research. Soft Matter 8 (41): 10583–10597.

      23 23 Ciobanu, L., Seeber, D.A., and Pennington, C.H. (2002). 3D MR microscopy with resolution 3.7 μm by 3.3 μm by 3.3 μm. Journal of Magnetic Resonance 158 (1–2): 178–182. doi: 10.1016/S1090-7807(02)00071-X.

      24 24 Gruschke, O.G., Baxan, N., Clad, L.et al. (2012). Lab on a chip phased-array MR multi-platform analysis system. Lab on a Chip 12 (3): 495–502. doi: 10.1039/c2lc20585h.

      25 25 Roffmann, W.U., Crozier, S., Luescher, K.et al. (1996). Small birdcage resonators for high-field NMR microscopy. Journal of Magnetic Resonance. Series B 111 (2): 174–177.

      26 26 Spengler, N., Moazenzadeh, A., Meier, R.et al. (2014). Micro-fabricated Helmholtz coil featuring disposable microfluidic sample inserts for applications in nuclear magnetic resonance. Journal of Micromechanics and Microengineering 24 (3): 034004. doi: 10.1088/0960-1317/24/3/034004.

      27 27 Schnall, M.D., Barlow, C., Subramanian, V.H.et al. (1969). Wireless implanted magnetic resonance probes for in vivo NMR. Journal of Magnetic Resonance 68 (1): 161–167. doi: 10.1016/0022-2364(86)90326-4.

      28 28 Wirth, E.D., III, Mareci, T.H., Beck, B.L.et al. (1993). A comparison of an inductively coupled implanted coil with optimized surface coils for in vivo NMR imaging of the spinal cord. Magnetic Resonance in Medicine 30 (5): 626–633. doi: 10.1002/mrm.1910300514.

      29 29 Silver, X., Ni, W.X., Mercer, E.V.et al. (2001). In vivo 1H magnetic resonance imaging and spectroscopy of the rat spinal cord using an inductively-coupled chronically implanted RF coil. Magnetic Resonance in Medicine 46 (6): 1216–1222. doi: 10.1002/mrm.1319.

      30 30 Elshafiey, I., Bilgen, M., He, R.et al. (2002). In vivo diffusion tensor imaging of rat spinal cord at 7 T. Magnetic Resonance Imaging 20 (3): 243–247. doi: 10.1016/S0730-725X(02)00493-9.

      31 31 Quick, H.H., Kuehl, H., Kaiser, G.et al. (2002). Inductively coupled stent antennas in MRI. Magnetic Resonance in Medicine 48 (5): 781–790. doi: 10.1002/mrm.10269.

      32 32 Ginefri, J.-C., Rubin, A., Tatoulian, M.et al. (2012). Implanted, inductively-coupled, radiofrequency coils fabricated on flexible polymeric material: Application to in vivo rat brain MRI at 7T. Journal of Magnetic Resonance 224: 61–70. doi: 10.1016/j.jmr.2012.09.003.

      33 33 Jouda, M., Kamberger, R., Leupold, J.et al. (2017). A comparison of Lenz lenses and LC resonators for NMR signal enhancement. Concepts in Magnetic Resonance. Part B, Magnetic Resonance Engineering 47B (3): e21357. doi: 10.1002/cmr.b.21357.

      34 34 Nils Spengler, P.T., While, M.V., Meissner, U.W.et al. (2017). Magnetic Lenz lenses improve the limit-of-detection in nuclear magnetic resonance. PLoS ONE 12 (8): e0182779. doi: 10.1371/journal.pone.0182779.

      35 35 Kamberger, R., Göbel-Guéniot, K., Gerlach, J.et al. (2018). Improved method for MR microscopy of brain tissue cultured with the interface method combined with Lenz lenses. Magnetic Resonance Imaging 52: 24–32. doi: 10.1016/j.mri.2018.05.010.

      36 36 Lichtman, J., Pfister, H., and Reid, C. (2020). Connections in the brain https://www.rc.fas.harvard.edu/case-studies/connections-in-the-brain (accessed 25 October 2020).

      37 37 Fuhrer, E., Bäcker, A., Kraft, S.et al. (2018). 3D carbon scaffolds for neural stem cell culture and magnetic resonance imaging. Advanced Healthcare Materials 7 (4): 1700915. doi: 10.1002/adhm.201700915.

      38  Скачать книгу