Скачать книгу

from marine sediments. Mar. Pollut. Bull. 73(1): 154–160. doi: 10.1016/j.marpolbul.2013.05.027.

      48 48 Aznar, R., Sánchez-Brunete, C., Albero, B., Rodríguez, J.A., and Tadeo, J.L. (2014). Occurrence and analysis of selected pharmaceutical compounds in soil from Spanish agricultural fields. Environ. Sci. Pollut. Res. 21(6): 4772–4782. doi: 10.1007/s11356-013-2438-7.

      49 49 Kumirska, J., Migowska, N., Caban, M., Łukaszewicz, P., and Stepnowski, P. (2015). Simultaneous determination of non-steroidal anti-inflammatory drugs and oestrogenic hormones in environmental solid samples. Sci. Total Environ. 508: 498–505. doi: 10.1016/j.scitotenv.2014.12.020.

      50 50 Mijangos, L., Ziarrusta, H., Prieto, A., Zugazua, O., Zuloaga, O., Olivares, M., Usobiaga, A., Paschke, A., and Etxebarria, N. (2018). Evaluation of polar organic chemical integrative and hollow fibre samplers for the determination of a wide variety of organic polar compounds in seawater. Talanta 185: 469–476. doi: 10.1016/j.talanta.2018.03.103.

      51 51 Wille, K., De Brabander, H.F., Vanhaecke, L., De Wulf, E., Van Caeter, P., and Janssen, C.R. (2012). Coupled chromatographic and mass-spectrometric techniques for the analysis of emerging pollutants in the aquatic environment. Trends Analyt. Chem. 35: 87–108. doi: 10.1016/j.trac.2011.12.003.

      52 52 Pazdro, K., Borecka, M., Siedlewicz, G., Białk-Bielińska, A., and Stepnowski, P. (2015). Analysis of the residues of pharmaceuticals in marine environment: State-of-the-art, analytical problems and challenges. Curr. Anal. Chem. 12(3): 202–226. doi: 10.2174/1573411012666151009193536.

      53 53 Wang, C., Shi, H., Adams, C.D., Gamagedara, S., Stayton, I., and Timmons, T. (2011). Investigation of pharmaceuticals in Missouri natural and drinking water using high performance liquid chromatography-tandem mass spectrometry. Water Res. 45(4): 1818–1828. doi: 10.1016/j.watres.2010.11.043.

      54 54 Ferrer, I., Zweigenbaum, J.A., and Thurman, E.M. (2010). Analysis of 70 environmental protection agency priority pharmaceuticals in water by EPA method 1694. J. Chromatogr. A 1217(36): 5674–5686. doi: 10.1016/j.chroma.2010.07.002.

      55 55 Sacher, F., Lange, F.T., Brauch, H.J., and Blankenhorn, I. (2001). Pharmaceuticals in groundwaters: Analytical methods and results of a monitoring program in Baden-Württemberg, Germany. J. Chromatogr. A 938(1–2): 199–210. doi: 10.1016/S0021-9673(0101266-3).

      56 56 Borecka, M., Białk-Bielińska, A., Siedlewicz, G., Kornowska, K., Kumirska, J., Stepnowski, P., and Pazdro, K. (2013). A new approach for the estimation of expanded uncertainty of results of an analytical method developed for determining antibiotics in seawater using solid-phase extraction disks and liquid chromatography coupled with tandem mass spectrometry technique. J. Chromatogr. A 1304: 138–146. doi: 10.1016/j.chroma.2013.07.018.

      57 57 Borecka, M., Siedlewicz, G., Haliński, Ł.P., Sikora, K., Pazdro, K., Stepnowski, P., and Białk-Bielińska, A. (2015). Contamination of the southern Baltic Sea waters by the residues of selected pharmaceuticals: Method development and field studies. Mar. Pollut. Bull. 94(1–2): 62–71. doi: 10.1016/j.marpolbul.2015.03.008.

      58 58 Caban, M., Lis, H., Kumirska, J., and Stepnowski, P. (2015). Determination of pharmaceutical residues in drinking water in Poland using a new SPE-GC-MS(SIM) method based on Speedisk extraction disks and DIMETRIS derivatization. Sci. Total Environ. 538: 402–411. doi: 10.1016/j.scitotenv.2015.08.076.

      59 59 Noppe, H., De Wasch, K., Poelmans, S., Van Hoof, N., Verslycke, T., and Janssen, C.R. (2005). Development and validation of an analytical method for detection of estrogens in water. Anal. Bioanal. Chem. 382(1): 91–98. doi: 10.1007/s00216-005-3174-8.

      60 60 Godlewska, K., Stepnowski, P., and Paszkiewicz, M. (2020). Application of the polar organic chemical integrative sampler for isolation of environmental micropollutants – A review. Crit. Rev. Anal. Chem. 50(1): 1–28. doi: 10.1080/10408347.2019.1565983.

      61 61 Herrera-Herrera, A.V., Hernández-Borges, J., Afonso, M.M., Palenzuela, J.A., and Rodríguez-Delgado, M.Á. (2013). Comparison between magnetic and non magnetic multi-walled carbon nanotubes-dispersive solid-phase extraction combined with ultra-high performance liquid chromatography for the determination of sulfonamide antibiotics in water samples. Talanta 116: 695–703. doi: 10.1016/j.talanta.2013.07.060.

      62 62 Li, J., Ren, X., Diao, Y., Chen, Y., Wang, Q., and Jin, W. (2018). Multiclass analysis of 25 veterinary drugs in milk by ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem. 257: 259–264. doi: 10.1016/j.foodchem.2018.02.144.

      63 63 Jakubus, A., Gromelski, M., Jagiello, K., Puzyn, T., Stepnowski, P., and Paszkiewicz, M. (2019). Dispersive solid-phase extraction using multi-walled carbon nanotubes combined with liquid chromatography–mass spectrometry for the analysis of β-blockers: Experimental and theoretical studies. Microchem. J. 146: 258–269. doi: 10.1016/j.microc.2018.12.063.

      64 64 Tsai, W.H., Huang, T.C., Huang, J.J., Hsue, Y.H., and Chuang, H.Y. (2009). Dispersive solid-phase microextraction method for sample extraction in the analysis of four tetracyclines in water and milk samples by high-performance liquid chromatography with diode-array detection. J. Chromatogr. A 1216(12): 2263–2269. doi: 10.1016/j.chroma.2009.01.034.

      65 65 Vera-Candioti, L., Gil García, M.D., Martínez Galera, M., and Goicoechea, H.C. (2008). Chemometric assisted solid-phase microextraction for the determination of anti-inflammatory and antiepileptic drugs in river water by liquid chromatography-diode array detection. J. Chromatogr. A 1211(1–2): 22–32. doi: 10.1016/j.chroma.2008.09.093.

      66 66 Bratkowska, D., Fontanals, N., Cormack, P.A.G., Borrull, F., and Marcé, R.M. (2012). Preparation of a polar monolithic stir bar based on methacrylic acid and divinylbenzene for the sorptive extraction of polar

Скачать книгу