Скачать книгу

and spatial analytical approach. Environ. Sci. Pollut. Res. 13: 28–36.

      2 2 Gómez‐Ariza, J.L., García‐Barrera, T., García‐Sevillano, M.A., and González‐Fernández, M. (2013). Metallomics and metabolomics of plants under environmental stress caused by metals. Heavy Metal Stress Plants: 173–201.

      3 3 Marguí, E., Queralt, I., Carvalho, M.L., and Hidalgo, M. (2005). Comparison of EDXRF and ICP‐OES after microwave digestion for element determination in plant specimens from an abandoned mining area. Anal. Chim. Acta 549: 197–204.

      4 4 Marguí, E., Queralt, I., and Hidalgo, M. (2009a). Application of X‐ray fluorescence spectrometry to determination and quantitation of metals in vegetal material. TrAC Trends Anal. Chem. 28: 362–372.

      5 5 Marguí, E. and Van Grieken, R. (2013). X‐ray Fluorescence Spectrometry and Related Techniques: An Introduction. LLC, New York: Momentum Press.

      6 6 Barua, A.G., Hazarika, S., Pathak, J.S., and Kalita, C. (2008). Spectroscopic investigation of the seeds of chilli (Capsicum annum L.). Int. J. Food Sci. Nutr. 59: 671–678.

      7 7 Campos, J.A., Tejera, N.A., and Sánchez, C.J. (2009). Substrate role in the accumulation of heavy metals in sporocarps of wild fungi. Biometals 22: 835–841.

      8 8 Adebiyi, F.M. and Asubiojo, O.I. (2008). Assessment of element accumulation from bitumen deposit by vegetation using Energy Dispersive X‐ray Fluorescence (EDXRF) spectroscopy technique. Chem. Ecol. 24: 423–435.

      9 9 Alexandre, T.L. and Bueno, M.I.M.S. (2006). Classification of some species, genera and families of plants by X‐ray spectrometry. X‐ray Spectrom. 35: 257–260.

      10 10 Gallardo, H., Queralt, I., Tapias, J. et al. (2016). Possibilities of low‐power X‐ray fluorescence spectrometry methods for rapid multielemental analysis and imaging of vegetal foodstuffs. J. Food Compos. Anal. 50: 1–9.

      11 11 Heckel, J. and Schramm, R. (1997). Bragg and Barkla polarization in EDXRF. Int. Centre for Diffraction Data 40: 384–392. Google Scholar.

      12 12 Marguí, E., Padilla, R., Hidalgo, M. et al. (2006). High‐energy polarized‐beam EDXRF for trace metal analysis of vegetation samples in environmental studies. X‐Ray Spectrom. 35: 169–177.

      13 13 Marguí, E., Hidalgo, M., Queralt, I. et al. (2012). Analytical capabilities of laboratory, benchtop and handheld X‐ray fluorescence systems for detection of metals in aqueous samples pre‐concentrated with solid‐phase extraction disks. Spectrochim. Acta Part B 67: 17–23.

      14 14 McLaren, T.I., Gupppy, C.N., and Tighe, M.K. (2012). A rapid and non‐destructive plant nutrient analysis using portable X‐ray fluorescence. Soil Sci. Soc. Am. J. 76: 1446–1453.

      15 15 EPA, U.S. (1998). Method 6200: Field Portable X‐ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment. Springfield, Virginia, USA: U.S Environ‐mental Protection Agency.

      16 16 Parsons, C., Margui Grabulosa, E., Pili, E. et al. (2013). Quantification of trace arsenic in soils by field‐portable X‐ray fluorescence spectrometry: Considerations for simple preparation and measurement conditions. J. Hazard. Mater. 262: 1213–1222.

      17 17 Pessanha, S., Marguí, E., Carvalho, M.L., and Queralt, I. (2020). A simple and sustainable portable triaxial energy dispersive X‐ray fluorescence method for in situ multielemental analysis of mining water samples. Spectrochim. Acta Part B 164: 105762.

      18 18 McGladdery, C., Weindorf, D.C., Chakraborty, S. et al. (2018). Elemental assessment of vegetation via portable X‐ray fluorescence (PXRF) spectrometry. J. Environ. Manage. 210: 210–225.

      19 19 Guerra, M.B.B., de Almeida, E., Carvalho, G.A. et al. (2014). Comparison of analytical performance of benchtop and handheld energy dispersive X‐ray fluorescence systems for the direct analysis of plant materials. J. Anal. At. Spectrom 29: 1667–1674.

      20 20 Varga, A., Garcinuño Martinez, R.M., Záray, G., and Fodor, F. (1999). Investigation of effects of cadmium, lead, nickel and vanadium contamination on the uptake and transport processes in cucumber plants by TXRF spectrometry. Spectrochim. Acta Part B 54: 1455–1462.

      21 21 Óvári, M., Mages, M., Woelfl, S. et al. (2004). Total reflection X‐ray fluorescence spectrometric determination of element inlets from mining activities at the upper Tisza catchment area, Hungary. Spectrochim. Acta Part B 59: 1173–1181.

      22 22 Hoefler, H., Streli, C., Wobrauschek, P. et al. (2006). Analysis of low Z elements in various environmental samples with total reflection X‐ray fluorescence (TXRF) spectrometry. Spectrochim. Acta Part B 61: 1135–1140.

      23 23 Natali, M., Zanella, A., Rankovic, A. et al. (2016). Assessment of trace metal air pollution in Paris using slurry‐TXRF analysis on cemetery mosses. Environ. Sci. Pollut. Res. 23: 23496–23510.

      24 24 Dalipi, R., Borgese, L., Tsuji, K. et al. (2018). Elemental analysis of teas, herbs and their infusions by means of total reflection X‐ray fluorescence. J. Food Compos. Anal. 67: 128–134.

      25 25 Vijayan, P., Willick, I.R., Lahlali, R. et al. (2015). Synchrotron radiation sheds fresh light on plant research: the use of powerful techniques to probe structure and composition of plants. Plant Cell Physiol. 56: 1252–1263.

      26 26 Marguí, E., Jurado, A., Hidalgo, M. et al. (2009b). Application of small‐spot energy dispersive X‐ray fluorescence instrumentation in phytoremediation activities around metal mines. Appl. Spectrosc. 63: 1396–1402.

      27 27 Ramos, I., Pataco, I.M., Mourinho, M.P. et al. (2016). Elemental mapping of biofortified wheat grains using micro X‐ray fluorescence. Spectrochim. Acta Part B 120: 30–36.

      28 28 Fittschen, U.E.A., Kunz, H.H., Höhner, R. et al. (2017). A new micro X‐ray fluorescence spectrometer for in vivo elemental analysis in plants. X‐Ray Spectrom. 46: 374–381.

      29 29 Marguí, E., Queralt, I., and Van Grieken, R. (2016). Sample preparation for X‐ray fluorescence analysis. In: Encyclopedia of Analytical Chemistry (ed. R.A. Meyers). Wiley.

      30 30 Omote, J., Kohno, H., and Toda, K. (1995). X‐ray fluorescence analysis utilizing the fundamental parameter method for the determination of the elemental composition in plant samples. Anal. Chim. Acta 307: 117–126.

      31 31 Garivait, S., Quisefit, J.P., de Chateaubourg, P., and Malingre, G. (1997). Multi‐element analysis of plants by WDXRF using the scattered radiation correction method. X‐Ray Spectrom. 26: 257–264.

      32 32 Aslan, A., Budak, G., and Karabulut, A. (2004). The amounts Fe, Ba, Sr, K, Ca and Ti in some lichens growing in Erzurum province (Turkey). J. Quant. Spectrosc. Radiat. Transfer 88: 423–431.

      33 33 Mages, M., Óvári, M., Tümpling, W.V., and Kröpfl, K. (2004). Biofilms as bioindicator for polluted waters? Total reflection X‐ray fluorescence analysis of biofilms of the Tisza river (Hungary). Anal. Bioanal. Chem. 378: 1095–1101.

      34 34 Sabatini, S.E., Juárez, A.B., Eppis, M.R. et al. (2009). Oxidative stress and antioxidant defenses in two green microalgae exposed to copper. Ecotoxicol. Environ. Saf. 72: 1200–1206.

      35 35 Bilo, F., Borgese, L., Dalipi, R. et al. (2017). Elemental analysis of tree leaves by total reflection X‐ray fluorescence: new approaches for air quality monitoring. Chemosphere 178: 504–512.

      36 36 Tsutsumimoto, K. and Tsuji, K. (2007). Time‐resolved X‐ray fluorescence for monitoring the intake of mineral nutrients in living plants. X‐ray Spectrom. 36: 324–327.

      37 37 Mera, M.F., Rubio, M., Pérez, C.A. et al. (2019). SR induced micro‐XRF for studying the spatial distribution of Pb in plants used for soil phytoremediation. Radiat. Phys. Chem. 154: 69–73.

      38 38 Akhter, F., Omelon, C., Gordon, R.A. et al. (2014). Localization and chemical speciation of cadmium in the roots of barley and lettuce. Environ. Exp. Bot. 100: 10–19.

      39 39 Gonzalez‐Fernandez, O., Batista, M.J., Abreu, M.M. et al. (2011). Elemental characterization of edible plants and soils in abandoned mining region: assessment of environmental risk. X‐ray Spectrom. 40 (5): 353–363.

      40 40

Скачать книгу