ТОП просматриваемых книг сайта:
Numerical Methods in Computational Finance. Daniel J. Duffy
Читать онлайн.Название Numerical Methods in Computational Finance
Год выпуска 0
isbn 9781119719724
Автор произведения Daniel J. Duffy
Жанр Ценные бумаги, инвестиции
Издательство John Wiley & Sons Limited
9 PART D: Advanced Finite Difference Schemes for Two-Factor Problems CHAPTER 18: Splitting Methods, Part I 18.1 INTRODUCTION AND OBJECTIVES 18.2 BACKGROUND AND HISTORY 18.3 NOTATION, PREREQUISITES AND MODEL PROBLEMS 18.4 MOTIVATION: TWO-DIMENSIONAL HEAT EQUATION 18.5 OTHER RELATED SCHEMES FOR THE HEAT EQUATION 18.6 BOUNDARY CONDITIONS 18.7 TWO-DIMENSIONAL CONVECTION PDEs 18.8 THREE-DIMENSIONAL PROBLEMS 18.9 THE HOPSCOTCH METHOD 18.10 SOFTWARE DESIGN AND IMPLEMENTATION GUIDELINES 18.11 THE FUTURE: CONVECTION-DIFFUSION EQUATIONS 18.12 SUMMARY AND CONCLUSIONS CHAPTER 19: The Alternating Direction Explicit (ADE) Method 19.1 INTRODUCTION AND OBJECTIVES 19.2 BACKGROUND AND PROBLEM STATEMENT 19.3 GLOBAL OVERVIEW AND APPLICABILITY OF ADE 19.4 MOTIVATING EXAMPLES: ONE-DIMENSIONAL AND TWO-DIMENSIONAL DIFFUSION EQUATIONS 19.5 ADE FOR CONVECTION (ADVECTION) EQUATION 19.6 CONVECTION-DIFFUSION PDEs 19.7 ATTENTION POINTS WITH ADE 19.8 SUMMARY AND CONCLUSIONS CHAPTER 20: The Method of Lines (MOL), Splitting and the Matrix Exponential 20.1 INTRODUCTION AND OBJECTIVES 20.2 NOTATION AND PREREQUISITES: THE EXPONENTIAL FUNCTION 20.3 THE EXPONENTIAL OF A MATRIX: ADVANCED TOPICS 20.4 MOTIVATION: ONE-DIMENSIONAL HEAT EQUATION 20.5 SEMI-LINEAR PROBLEMS 20.6 TEST CASE: DOUBLE-BARRIER OPTIONS 20.7 SUMMARY AND CONCLUSIONS CHAPTER 21: Free and Moving Boundary Value Problems 21.1 INTRODUCTION AND OBJECTIVES 21.2 BACKGROUND, PROBLEM STATEMENT AND FORMULATIONS 21.3 NOTATION AND PREREQUISITES 21.4 SOME INITIAL EXAMPLES OF FREE AND MOVING BOUNDARY VALUE PROBLEMS 21.5 AN INTRODUCTION TO PARABOLIC VARIATIONAL INEQUALITIES 21.6 AN INTRODUCTION TO FRONT-FIXING 21.7 PYTHON CODE EXAMPLE: ADE FOR AMERICAN OPTION PRICING 21.8 SUMMARY AND CONCLUSIONS CHAPTER 22: Splitting Methods, Part II 22.1 INTRODUCTION AND OBJECTIVES 22.2 BACKGROUND AND PROBLEM STATEMENT: THE ESSENCE OF SEQUENTIAL SPLITTING 22.3 NOTATION AND MATHEMATICAL FORMULATION 22.4 MATHEMATICAL FOUNDATIONS OF SPLITTING METHODS 22.5 SOME POPULAR SPLITTING METHODS 22.6 APPLICATIONS AND RELATIONSHIPS TO COMPUTATIONAL FINANCE 22.7 SOFTWARE DESIGN AND IMPLEMENTATION GUIDELINES 22.8 EXPERIENCE REPORT: COMPARING ADI AND SPLITTING 22.9 SUMMARY AND CONCLUSIONS