Скачать книгу

health and technological applications. Trends Food Sci. Technol. 93, 23–35 (2019). https://ZZdoi.orgZ10.1016Zj.tifs.2019.09.004

      13. Gullón, B., Gagaoua, M., Barba, F.J., Gullón, P., Zhang, W., Lorenzo, J.M.: Seaweeds as promising resource of bioactive compounds: Overview of novel extraction strategies and design of tailored meat products. Trends Food Sci. Technol. 100, 1–18 (2020). https://ZZdoi.orgZ10.1016Zj.tifs.2020.03.039

      14. Research, G.V.: Prebiotics market size, share & trends analysis by ingredients (FOS, Inulin, GOS, MOS), by application (Food and Beverages, Dietary Supplements, Animal Feed), by region, and segment forecasts, 2014 – 2024., https://www.grandviewresearch.com/industry-analysis/prebiotics-market.

      15. Swanson, K.S., Gibson, G.R., Hutkins, R., Reimer, R.A., Reid, G., Verbeke, K., Scott, K.P., Holscher, H.D., Azad, M.B., Delzenne, N.M., Sanders, M.E.: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 17, 687–701 (2020). https://ZZdoi.orgZ10.1038Zs41575-020-0344-2

      16. Scott, K.P., Grimaldi, R., Cunningham, M., Sarbini, S.R., Wijeyesekera, A., Tang, M.L.K., Lee, J.C.Y., Yau, Y.F., Ansell, J., Theis, S., Yang, K., Menon, R., Arfsten, J., Manurung, S., Gourineni, V., Gibson, G.R.: Developments in understanding and applying prebiotics in research and practice—an ISAPP conference paper. J. Appl. Microbiol. 1–16 (2019). https://doi.org/10.1111/jam.14424

      17. Khangwal, I., Shukla, P.: Potential prebiotics and their transmission mechanisms: recent approaches. J. Food Drug Anal. 27, 649–656 (2019). https://doi.org/10.1016/j.jfda.2019.02.003

      18. Mohanty, D., Misra, S., Mohapatra, S., Sahu, P.S.: Prebiotics and synbiotics: recent concepts in nutrition. Food Biosci. 26, 152–160 (2018). https://doi.org/10.1016/j.fbio.2018.10.008

      20. Sako, T., Tanaka, R.: Prebiotic: Types. In: Fuquay, J., Fox, P., and McSweeney, P. (eds.) Encyclopedia of Dairy Sciences. pp. 4:354-4:365. Elsevier Ltd, London, UK (2011).

      21. Tuohy, K.M., Ziemer, C.J., Klinder, A., Knöbel, Y., Pool-Zobel, B.L., Gibson, G.R.: A human volunteer study to determine the prebiotic effects of lactulose powder on human colonic microbiota. Microb. Ecol. Health Dis. 14, 165–173 (2002). https://doi.org/10.1080/089106002320644357

      22. Seki, N., Hamano, H., Iiyama, Y., Asano, Y., Kokubo, S., Yamauchi, K., Tamura, Y., Uenishi, K., Kudou, H.: Effect of lactulose on calcium and magnesium absorption: a study using stable isotopes in adult men. J. Nutr. Sci. Vitaminol. (Tokyo). 53, 5–12 (2007).

      23. van den heuvel, E.G.H.M., Muijs, T., van dokkum, W., Schaafsma, G.: Lactulose stimulates calcium absorption in postmenopausal women. J. Bone Miner. Res. 14, 1211–1216 (1999). https://doi.org/10.1359/jbmr.1999.14.7.1211

      24. Ganzle, M.G.: Lactose: Galacto-Oligosaccharides. In: Fuquay, J. W.; Fox, P. F.; Mcsweeney, P.L.H. (ed.) Encyclopedia of Dairy Sciences. pp. 3:209-3:216. Elsevier Ltd, London, UK (2011).

      25. Mensink, M.A., Frijlink, H.W., van der Voort Maarschalk, K., Hinrichs, W.L.J.: Inulin, a flexible oligosaccharide I: review of its physicochemical characteristics. Carbohydr. Polym. 130, 405–419 (2015). https://doi.org/10.1016/j.carbpol.2015.05.026

      26. Gibson, G.R., Probert, H.M., Loo, J. Van, Rastall, R.A., Roberfroid, M.B.: Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr. Res. Rev. 17, 259 (2004). https://doi.org/10.1079/NRR200479

      27. Franck, A.: Technological functionality of inulin and oligofructose. Br. J. Nutr. 87 Suppl 2, S287–S291 (2002). https://doi.org/10.1079/BJNBJN/2002550

      28. Lorenzoni, A.S.G., Aydos, L.F., Klein, M.P., Rodrigues, R.C., Hertz, P.F.: Fructooligosaccharides synthesis by highly stable immobilized β-fructo-furanosidase from Aspergillus aculeatus. Carbohydr. Polym. 103, 193–197 (2014). https://doi.org/10.1016/J.CARBPOL.2013.12.038

      29. Švejstil, R., Musilová, Š., Rada, V.: Raffinose-series oligosaccharides in soybean products. Sci. Agric. Bohem. 46, 73–77 (2015). https://doi.org/10.1515/sab-2015-0019

      30. Ganter, C., Böck, A., Buckel, P., Mattes, R.: Production of thermostable, recombinant α-galactosidase suitable for raffinose elimination from sugar beet syrup. J. Biotechnol. 8, 301–310 (1988). https://doi.org/10.1016/0168-1656(88)90022-3

      32. Samanta, A.K., Jayapal, N., Jayaram, C., Roy, S., Kolte, A.P., Senani, S., Sridhar, M.: Xylooligosaccharides as prebiotics from agricultural by-products: production and applications. Bioact. Carbohydrates Diet. Fibre. 5, 62–71 (2015). https://doi.org/10.1016/JfbCDF.2014.12.003

      33. Rajagopalan, G., Shanmugavelu, K., Yang, K.-L.: Production of prebiotic-xylooligosaccharides from alkali pretreated mahogany and mango wood sawdust by using purified xylanase of Clostridium strain BOH3. Carbohydr. Polym. 167, 158–166 (2017). https://doi.org/10.1016/J.CARBPOL.2017.03.021

      34. Yin, H., Du, Y., Dong, Z.: Chitin oligosaccharide and chitosan oligosaccharide: two similar but different plant elicitors. Front. Plant Sci. 7, 522 (2016). https://doi.org/10.3389/fpls.2016.00522

      35. Ngo, D.-N., Lee, S.-H., Kim, M.-M., Kim, S.-K.: Production of chitin oligosaccharides with different molecular weights and their antioxidant effect in RAW 264.7 cells. J. Funct. Foods. 1, 188–198 (2009). https://doi.org/10.1016/J.JFF.2009.01.008

      36. Muanprasat, C., Chatsudthipong, V.: Chitosan oligosaccharide: Biological activities and potential therapeutic applications. Pharmacol. tter. 170, 80–97 (2017). https://doi.org/10.1016/JfbHARMTHERA.2016.10.013

      37. Chang, C.J., Lin, T.L., Tsai, Y.L., Wu, T.R., Lai, W.F., Lu, C.C., Lai, H.C.: Next generation probiotics in disease amelioration. J. Food Drug Anal. 27, 615–622 (2019). https://doi.org/10.1016Zj.jfda.2018.12.011

      38. Wu, T.-R., Lin, C.-S., Chang, C.-J., Lin, T.-L., Martel, J., Ko, Y.-F., Ojcius, D.M., Lu, C.-C., Young, J.D., Lai, H.-C.: Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis. Gut. 68, 248–262 (2019). https://doi.org/10.1136/gutjnl-2017-315458

Скачать книгу